1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
%global _empty_manifest_terminate_build 0
Name: python-cca-zoo
Version: 1.17.7
Release: 1
Summary: Canonical Correlation Analysis Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic methods in a scikit-learn style framework
License: MIT
URL: https://github.com/jameschapman19/cca_zoo
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/79/58/d137e5dfc61e77e2abf5d1211d5b30bbaa82635adc44fe58312498342ca2/cca_zoo-1.17.7.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-scikit-learn
Requires: python3-scikit-prox
Requires: python3-pytest
Requires: python3-matplotlib
Requires: python3-pandas
Requires: python3-seaborn
Requires: python3-tensorly
Requires: python3-joblib
Requires: python3-mvlearn
Requires: python3-tqdm
Requires: python3-setuptools
Requires: python3-torch
Requires: python3-torchvision
Requires: python3-pytorch-lightning
Requires: python3-jax
Requires: python3-numpyro
Requires: python3-arviz
Requires: python3-torch
Requires: python3-torchvision
Requires: python3-pytorch-lightning
Requires: python3-jax
Requires: python3-numpyro
Requires: python3-arviz
%description
[](https://doi.org/10.5281/zenodo.4382739)
[](https://codecov.io/gh/jameschapman19/cca_zoo)

[](https://cca-zoo.readthedocs.io/en/latest/?badge=latest)
[](https://pypi.org/project/cca-zoo/)
[](https://pypi.org/project/cca-zoo/)
[](https://doi.org/10.21105/joss.03823)
# CCA-Zoo
`cca-zoo` is a collection of linear, kernel, and deep methods for canonical correlation analysis of multiview data.
Where possible it follows the `scikit-learn`/`mvlearn` APIs and models therefore have `fit`/`transform`/`fit_transform`
methods as standard.
## Installation
Dependency of some implemented algorithms are heavy, such as `pytorch` and `numpyro`.
We provide several options to accomodate the user's needs.
For full details of algorithms included, please refer to section [Implemented Methods](#implemented-methods)
Standard installation:
```
pip install cca-zoo
```
For deep learning elements use:
```
pip install cca-zoo[deep]
```
For probabilistic elements use:
```
pip install cca-zoo[probabilistic]
```
## Documentation
Available at https://cca-zoo.readthedocs.io/en/latest/
## Citation:
CCA-Zoo is intended as research software. Citations and use of our software help us justify the effort which has gone
into, and will keep going into, maintaining and growing this project. Stars on the repo are also greatly appreciated :)
If you have used CCA-Zoo in your research, please consider citing our JOSS paper:
Chapman et al., (2021). CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods
in a scikit-learn style framework. Journal of Open Source Software, 6(68), 3823, https://doi.org/10.21105/joss.03823
With bibtex entry:
```bibtex
@article{Chapman2021,
doi = {10.21105/joss.03823},
url = {https://doi.org/10.21105/joss.03823},
year = {2021},
publisher = {The Open Journal},
volume = {6},
number = {68},
pages = {3823},
author = {James Chapman and Hao-Ting Wang},
title = {CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods in a scikit-learn style framework},
journal = {Journal of Open Source Software}
}
```
## Contributions
A guide to contributions is available at https://cca-zoo.readthedocs.io/en/latest/developer_info/contribute.html
## Sources
I've added this section to give due credit to the repositories that helped me in addition to their copyright notices in
the code where relevant.
### Other Implementations of (regularised)CCA/PLS
[MATLAB implementation](https://github.com/anaston/PLS_CCA_framework)
### Implementation of Sparse PLS
MATLAB implementation of SPLS by [@jmmonteiro](https://github.com/jmmonteiro/spls)
### Other Implementations of DCCA/DCCAE
Keras implementation of DCCA from [@VahidooX's github page](https://github.com/VahidooX)
The following are the other implementations of DCCA in MATLAB and C++. These codes are written by the authors of the
original paper:
[Torch implementation](https://github.com/Michaelvll/DeepCCA) of DCCA from @MichaelVll & @Arminarj
C++ implementation of DCCA from Galen Andrew's [website](https://homes.cs.washington.edu/~galen/)
MATLAB implementation of DCCA/DCCAE from Weiran Wang's [website](http://ttic.uchicago.edu/~wwang5/dccae.html)
MATLAB implementation of [TCCA](https://github.com/rciszek/mdr_tcca)
### Implementation of VAE
[Torch implementation of VAE](https://github.com/pytorch/examples/tree/master/vae)
%package -n python3-cca-zoo
Summary: Canonical Correlation Analysis Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic methods in a scikit-learn style framework
Provides: python-cca-zoo
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-cca-zoo
[](https://doi.org/10.5281/zenodo.4382739)
[](https://codecov.io/gh/jameschapman19/cca_zoo)

[](https://cca-zoo.readthedocs.io/en/latest/?badge=latest)
[](https://pypi.org/project/cca-zoo/)
[](https://pypi.org/project/cca-zoo/)
[](https://doi.org/10.21105/joss.03823)
# CCA-Zoo
`cca-zoo` is a collection of linear, kernel, and deep methods for canonical correlation analysis of multiview data.
Where possible it follows the `scikit-learn`/`mvlearn` APIs and models therefore have `fit`/`transform`/`fit_transform`
methods as standard.
## Installation
Dependency of some implemented algorithms are heavy, such as `pytorch` and `numpyro`.
We provide several options to accomodate the user's needs.
For full details of algorithms included, please refer to section [Implemented Methods](#implemented-methods)
Standard installation:
```
pip install cca-zoo
```
For deep learning elements use:
```
pip install cca-zoo[deep]
```
For probabilistic elements use:
```
pip install cca-zoo[probabilistic]
```
## Documentation
Available at https://cca-zoo.readthedocs.io/en/latest/
## Citation:
CCA-Zoo is intended as research software. Citations and use of our software help us justify the effort which has gone
into, and will keep going into, maintaining and growing this project. Stars on the repo are also greatly appreciated :)
If you have used CCA-Zoo in your research, please consider citing our JOSS paper:
Chapman et al., (2021). CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods
in a scikit-learn style framework. Journal of Open Source Software, 6(68), 3823, https://doi.org/10.21105/joss.03823
With bibtex entry:
```bibtex
@article{Chapman2021,
doi = {10.21105/joss.03823},
url = {https://doi.org/10.21105/joss.03823},
year = {2021},
publisher = {The Open Journal},
volume = {6},
number = {68},
pages = {3823},
author = {James Chapman and Hao-Ting Wang},
title = {CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods in a scikit-learn style framework},
journal = {Journal of Open Source Software}
}
```
## Contributions
A guide to contributions is available at https://cca-zoo.readthedocs.io/en/latest/developer_info/contribute.html
## Sources
I've added this section to give due credit to the repositories that helped me in addition to their copyright notices in
the code where relevant.
### Other Implementations of (regularised)CCA/PLS
[MATLAB implementation](https://github.com/anaston/PLS_CCA_framework)
### Implementation of Sparse PLS
MATLAB implementation of SPLS by [@jmmonteiro](https://github.com/jmmonteiro/spls)
### Other Implementations of DCCA/DCCAE
Keras implementation of DCCA from [@VahidooX's github page](https://github.com/VahidooX)
The following are the other implementations of DCCA in MATLAB and C++. These codes are written by the authors of the
original paper:
[Torch implementation](https://github.com/Michaelvll/DeepCCA) of DCCA from @MichaelVll & @Arminarj
C++ implementation of DCCA from Galen Andrew's [website](https://homes.cs.washington.edu/~galen/)
MATLAB implementation of DCCA/DCCAE from Weiran Wang's [website](http://ttic.uchicago.edu/~wwang5/dccae.html)
MATLAB implementation of [TCCA](https://github.com/rciszek/mdr_tcca)
### Implementation of VAE
[Torch implementation of VAE](https://github.com/pytorch/examples/tree/master/vae)
%package help
Summary: Development documents and examples for cca-zoo
Provides: python3-cca-zoo-doc
%description help
[](https://doi.org/10.5281/zenodo.4382739)
[](https://codecov.io/gh/jameschapman19/cca_zoo)

[](https://cca-zoo.readthedocs.io/en/latest/?badge=latest)
[](https://pypi.org/project/cca-zoo/)
[](https://pypi.org/project/cca-zoo/)
[](https://doi.org/10.21105/joss.03823)
# CCA-Zoo
`cca-zoo` is a collection of linear, kernel, and deep methods for canonical correlation analysis of multiview data.
Where possible it follows the `scikit-learn`/`mvlearn` APIs and models therefore have `fit`/`transform`/`fit_transform`
methods as standard.
## Installation
Dependency of some implemented algorithms are heavy, such as `pytorch` and `numpyro`.
We provide several options to accomodate the user's needs.
For full details of algorithms included, please refer to section [Implemented Methods](#implemented-methods)
Standard installation:
```
pip install cca-zoo
```
For deep learning elements use:
```
pip install cca-zoo[deep]
```
For probabilistic elements use:
```
pip install cca-zoo[probabilistic]
```
## Documentation
Available at https://cca-zoo.readthedocs.io/en/latest/
## Citation:
CCA-Zoo is intended as research software. Citations and use of our software help us justify the effort which has gone
into, and will keep going into, maintaining and growing this project. Stars on the repo are also greatly appreciated :)
If you have used CCA-Zoo in your research, please consider citing our JOSS paper:
Chapman et al., (2021). CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods
in a scikit-learn style framework. Journal of Open Source Software, 6(68), 3823, https://doi.org/10.21105/joss.03823
With bibtex entry:
```bibtex
@article{Chapman2021,
doi = {10.21105/joss.03823},
url = {https://doi.org/10.21105/joss.03823},
year = {2021},
publisher = {The Open Journal},
volume = {6},
number = {68},
pages = {3823},
author = {James Chapman and Hao-Ting Wang},
title = {CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods in a scikit-learn style framework},
journal = {Journal of Open Source Software}
}
```
## Contributions
A guide to contributions is available at https://cca-zoo.readthedocs.io/en/latest/developer_info/contribute.html
## Sources
I've added this section to give due credit to the repositories that helped me in addition to their copyright notices in
the code where relevant.
### Other Implementations of (regularised)CCA/PLS
[MATLAB implementation](https://github.com/anaston/PLS_CCA_framework)
### Implementation of Sparse PLS
MATLAB implementation of SPLS by [@jmmonteiro](https://github.com/jmmonteiro/spls)
### Other Implementations of DCCA/DCCAE
Keras implementation of DCCA from [@VahidooX's github page](https://github.com/VahidooX)
The following are the other implementations of DCCA in MATLAB and C++. These codes are written by the authors of the
original paper:
[Torch implementation](https://github.com/Michaelvll/DeepCCA) of DCCA from @MichaelVll & @Arminarj
C++ implementation of DCCA from Galen Andrew's [website](https://homes.cs.washington.edu/~galen/)
MATLAB implementation of DCCA/DCCAE from Weiran Wang's [website](http://ttic.uchicago.edu/~wwang5/dccae.html)
MATLAB implementation of [TCCA](https://github.com/rciszek/mdr_tcca)
### Implementation of VAE
[Torch implementation of VAE](https://github.com/pytorch/examples/tree/master/vae)
%prep
%autosetup -n cca-zoo-1.17.7
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-cca-zoo -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.17.7-1
- Package Spec generated
|