summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-06-20 07:08:51 +0000
committerCoprDistGit <infra@openeuler.org>2023-06-20 07:08:51 +0000
commit94bf4e75b9f6a9b4c911fd5bc46a2dca7dc22b70 (patch)
tree1b8bff88c316bf24329046533388b205f0aea573
parentb2083d554223befd3d710eb539fae473f17efe6a (diff)
automatic import of python-cdeopeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-cde.spec303
-rw-r--r--sources1
3 files changed, 305 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..0c01220 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/cde-0.6.1.tar.gz
diff --git a/python-cde.spec b/python-cde.spec
new file mode 100644
index 0000000..6512982
--- /dev/null
+++ b/python-cde.spec
@@ -0,0 +1,303 @@
+%global _empty_manifest_terminate_build 0
+Name: python-cde
+Version: 0.6.1
+Release: 1
+Summary: Framework for conditional density estimation
+License: MIT
+URL: https://jonasrothfuss.github.io/Nonparametric_Density_Estimation
+Source0: https://mirrors.aliyun.com/pypi/web/packages/9c/8c/fc3be557e738b91bc203e73d4068186dc94a32c6ad10770d9af957793cd5/cde-0.6.1.tar.gz
+BuildArch: noarch
+
+
+%description
+[![Build Status](https://travis-ci.org/freelunchtheorem/Conditional_Density_Estimation.svg?branch=master)](https://travis-ci.org/freelunchtheorem/Conditional_Density_Estimation) [![Downloads](https://pepy.tech/badge/cde)](https://pepy.tech/project/cde)
+
+# Conditional Density Estimation (CDE)
+
+## Description
+Implementations of various methods for conditional density estimation
+
+* **Parametric neural network based methods**
+ * Mixture Density Network (MDN)
+ * Kernel Mixture Network (KMN)
+ * Normalizing Flows (NF)
+* **Nonparametric methods**
+ * Conditional Kernel Density Estimation (CKDE)
+ * Neighborhood Kernel Density Estimation (NKDE)
+* **Semiparametric methods**
+ * Least Squares Conditional Density Estimation (LSKDE)
+
+Beyond estimating conditional probability densities, the package features extensive functionality for computing:
+* **Centered moments:** mean, covariance, skewness and kurtosis
+* **Statistical divergences:** KL-divergence, JS-divergence, Hellinger distance
+* **Percentiles and expected shortfall**
+
+## Installation
+
+To use the library, you can directly use the python package index:
+```bash
+pip install cde
+```
+or clone the GitHub repository and run
+```bash
+pip install .
+```
+Note that the package only supports tensorflow versions between 1.4 and 1.7.
+## Documentation and paper
+See the documentation [here](https://freelunchtheorem.github.io/Conditional_Density_Estimation). A paper on best practices and benchmarks on conditional density estimation with neural networks that makes extensive use of this library can be found [here](https://arxiv.org/abs/1903.00954).
+
+## Usage
+The following code snipped holds an easy example that demonstrates how to use the cde package.
+```python
+from cde.density_simulation import SkewNormal
+from cde.density_estimator import KernelMixtureNetwork
+import numpy as np
+
+""" simulate some data """
+density_simulator = SkewNormal(random_seed=22)
+X, Y = density_simulator.simulate(n_samples=3000)
+
+""" fit density model """
+model = KernelMixtureNetwork("KDE_demo", ndim_x=1, ndim_y=1, n_centers=50,
+ x_noise_std=0.2, y_noise_std=0.1, random_seed=22)
+model.fit(X, Y)
+
+""" query the conditional pdf and cdf """
+x_cond = np.zeros((1, 1))
+y_query = np.ones((1, 1)) * 0.1
+prob = model.pdf(x_cond, y_query)
+cum_prob = model.cdf(x_cond, y_query)
+
+""" compute conditional moments & VaR """
+mean = model.mean_(x_cond)[0][0]
+std = model.std_(x_cond)[0][0]
+skewness = model.skewness(x_cond)[0]
+```
+## Citing
+If you use CDE in your research, you can cite it as follows:
+
+```
+@article{rothfuss2019conditional,
+ title={Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks},
+ author={Rothfuss, Jonas and Ferreira, Fabio and Walther, Simon and Ulrich, Maxim},
+ journal={arXiv:1903.00954},
+ year={2019}
+}
+
+```
+
+## Todo
+- creating a branch just for our conditional estimators + python package
+
+%package -n python3-cde
+Summary: Framework for conditional density estimation
+Provides: python-cde
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-cde
+[![Build Status](https://travis-ci.org/freelunchtheorem/Conditional_Density_Estimation.svg?branch=master)](https://travis-ci.org/freelunchtheorem/Conditional_Density_Estimation) [![Downloads](https://pepy.tech/badge/cde)](https://pepy.tech/project/cde)
+
+# Conditional Density Estimation (CDE)
+
+## Description
+Implementations of various methods for conditional density estimation
+
+* **Parametric neural network based methods**
+ * Mixture Density Network (MDN)
+ * Kernel Mixture Network (KMN)
+ * Normalizing Flows (NF)
+* **Nonparametric methods**
+ * Conditional Kernel Density Estimation (CKDE)
+ * Neighborhood Kernel Density Estimation (NKDE)
+* **Semiparametric methods**
+ * Least Squares Conditional Density Estimation (LSKDE)
+
+Beyond estimating conditional probability densities, the package features extensive functionality for computing:
+* **Centered moments:** mean, covariance, skewness and kurtosis
+* **Statistical divergences:** KL-divergence, JS-divergence, Hellinger distance
+* **Percentiles and expected shortfall**
+
+## Installation
+
+To use the library, you can directly use the python package index:
+```bash
+pip install cde
+```
+or clone the GitHub repository and run
+```bash
+pip install .
+```
+Note that the package only supports tensorflow versions between 1.4 and 1.7.
+## Documentation and paper
+See the documentation [here](https://freelunchtheorem.github.io/Conditional_Density_Estimation). A paper on best practices and benchmarks on conditional density estimation with neural networks that makes extensive use of this library can be found [here](https://arxiv.org/abs/1903.00954).
+
+## Usage
+The following code snipped holds an easy example that demonstrates how to use the cde package.
+```python
+from cde.density_simulation import SkewNormal
+from cde.density_estimator import KernelMixtureNetwork
+import numpy as np
+
+""" simulate some data """
+density_simulator = SkewNormal(random_seed=22)
+X, Y = density_simulator.simulate(n_samples=3000)
+
+""" fit density model """
+model = KernelMixtureNetwork("KDE_demo", ndim_x=1, ndim_y=1, n_centers=50,
+ x_noise_std=0.2, y_noise_std=0.1, random_seed=22)
+model.fit(X, Y)
+
+""" query the conditional pdf and cdf """
+x_cond = np.zeros((1, 1))
+y_query = np.ones((1, 1)) * 0.1
+prob = model.pdf(x_cond, y_query)
+cum_prob = model.cdf(x_cond, y_query)
+
+""" compute conditional moments & VaR """
+mean = model.mean_(x_cond)[0][0]
+std = model.std_(x_cond)[0][0]
+skewness = model.skewness(x_cond)[0]
+```
+## Citing
+If you use CDE in your research, you can cite it as follows:
+
+```
+@article{rothfuss2019conditional,
+ title={Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks},
+ author={Rothfuss, Jonas and Ferreira, Fabio and Walther, Simon and Ulrich, Maxim},
+ journal={arXiv:1903.00954},
+ year={2019}
+}
+
+```
+
+## Todo
+- creating a branch just for our conditional estimators + python package
+
+%package help
+Summary: Development documents and examples for cde
+Provides: python3-cde-doc
+%description help
+[![Build Status](https://travis-ci.org/freelunchtheorem/Conditional_Density_Estimation.svg?branch=master)](https://travis-ci.org/freelunchtheorem/Conditional_Density_Estimation) [![Downloads](https://pepy.tech/badge/cde)](https://pepy.tech/project/cde)
+
+# Conditional Density Estimation (CDE)
+
+## Description
+Implementations of various methods for conditional density estimation
+
+* **Parametric neural network based methods**
+ * Mixture Density Network (MDN)
+ * Kernel Mixture Network (KMN)
+ * Normalizing Flows (NF)
+* **Nonparametric methods**
+ * Conditional Kernel Density Estimation (CKDE)
+ * Neighborhood Kernel Density Estimation (NKDE)
+* **Semiparametric methods**
+ * Least Squares Conditional Density Estimation (LSKDE)
+
+Beyond estimating conditional probability densities, the package features extensive functionality for computing:
+* **Centered moments:** mean, covariance, skewness and kurtosis
+* **Statistical divergences:** KL-divergence, JS-divergence, Hellinger distance
+* **Percentiles and expected shortfall**
+
+## Installation
+
+To use the library, you can directly use the python package index:
+```bash
+pip install cde
+```
+or clone the GitHub repository and run
+```bash
+pip install .
+```
+Note that the package only supports tensorflow versions between 1.4 and 1.7.
+## Documentation and paper
+See the documentation [here](https://freelunchtheorem.github.io/Conditional_Density_Estimation). A paper on best practices and benchmarks on conditional density estimation with neural networks that makes extensive use of this library can be found [here](https://arxiv.org/abs/1903.00954).
+
+## Usage
+The following code snipped holds an easy example that demonstrates how to use the cde package.
+```python
+from cde.density_simulation import SkewNormal
+from cde.density_estimator import KernelMixtureNetwork
+import numpy as np
+
+""" simulate some data """
+density_simulator = SkewNormal(random_seed=22)
+X, Y = density_simulator.simulate(n_samples=3000)
+
+""" fit density model """
+model = KernelMixtureNetwork("KDE_demo", ndim_x=1, ndim_y=1, n_centers=50,
+ x_noise_std=0.2, y_noise_std=0.1, random_seed=22)
+model.fit(X, Y)
+
+""" query the conditional pdf and cdf """
+x_cond = np.zeros((1, 1))
+y_query = np.ones((1, 1)) * 0.1
+prob = model.pdf(x_cond, y_query)
+cum_prob = model.cdf(x_cond, y_query)
+
+""" compute conditional moments & VaR """
+mean = model.mean_(x_cond)[0][0]
+std = model.std_(x_cond)[0][0]
+skewness = model.skewness(x_cond)[0]
+```
+## Citing
+If you use CDE in your research, you can cite it as follows:
+
+```
+@article{rothfuss2019conditional,
+ title={Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks},
+ author={Rothfuss, Jonas and Ferreira, Fabio and Walther, Simon and Ulrich, Maxim},
+ journal={arXiv:1903.00954},
+ year={2019}
+}
+
+```
+
+## Todo
+- creating a branch just for our conditional estimators + python package
+
+%prep
+%autosetup -n cde-0.6.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-cde -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..d3e4720
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+f82ba520d5f47eb71919e20243e2c9e8 cde-0.6.1.tar.gz