1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
%global _empty_manifest_terminate_build 0
Name: python-cdm-connector
Version: 0.0.6.70
Release: 1
Summary: A Python package to read and write files in CDM format. Customized for SkyPoint use cases.
License: GPL-3.0
URL: https://github.com/skypointcloud/skypoint-python-cdm-connector
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f9/6e/b4595933644029689cd3cd32e2aab235b23d1de4506bc4a35f02901819aa/cdm-connector-0.0.6.70.tar.gz
BuildArch: noarch
Requires: python3-pandas
Requires: python3-azure-storage-blob
Requires: python3-numpy
Requires: python3-retry
Requires: python3-boto3
Requires: python3-botocore
%description
# skypoint-python-cdm-connector
Python Spark CDM Connector by SkyPoint.
Apache Spark connector for the Microsoft Azure "Common Data Model". Reading and writing is supported and it is a work in progress. Please file issues for any bugs that you find.
For more information about the Azure Common Data Model, check out [this page](https://docs.microsoft.com/en-us/common-data-model/data-lake). <br>
We support Azure Data Lake Service (ADLS) and AWS S3 as storage, historical data preservation using snapshots of the schema & data files and usage within PySpark, Azure Functions etc.
*Upcoming Support for incremental data refresh handling, [CDM 1.1](https://docs.microsoft.com/en-us/common-data-model/cdm-manifest and Google Cloud (Cloud Storage). <br>
## Example
1. Please look into the sample usage file skypoint_python_cdm.py
2. Dynamically add/remove entities, annotations and attributes
3. Pass Reader and Writer object for any storage account you like to write/read data to/from.
4. Check out the below code for basic read and write examples.
```python
# Initialize empty model
m = Model()
# Sample dataframe
df = {"country": ["Brazil", "Russia", "India", "China", "South Africa", "ParaSF"],
"currentTime": [datetime.now(), datetime.now(), datetime.now(), datetime.now(), datetime.now(), datetime.now()],
"area": [8.516, 17.10, 3.286, 9.597, 1.221, 2.222],
"capital": ["Brasilia", "Moscow", "New Dehli", "Beijing", "Pretoria", "ParaSF"],
"population": [200.4, 143.5, 1252, 1357, 52.98, 12.34] }
df = pd.DataFrame(df)
# Generate entity from the dataframe
entity = Model.generate_entity(df, "customEntity")
# Add generated entity to model
m.add_entity(entity)
# Add model level annotation
# Annotation can be added at entity level as well as attribute level
Model.add_annotation("modelJsonAnnotation", "modelJsonAnnotationValue", m)
# Create an ADLSWriter to write into ADLS
writer = ADLSWriter("ACCOUNT_NAME", "ACCOUNT_KEY",
"CONTAINER_NAME", "STORAGE_NAME", "DATAFLOW_NAME")
# Write data as well as model.json in ADLS storage
m.write_to_storage("customEntity", df, writer)
```
## Contributing
This project welcomes contributions and suggestions.
## References
[Model.json version1 schema](https://github.com/microsoft/CDM/blob/master/docs/schema/modeljsonschema.json)
[A clean implementation for Python Objects from/to model.json file](https://github.com/Azure-Samples/cdm-azure-data-services-integration/blob/master/CDM/python/CdmModel.py)
%package -n python3-cdm-connector
Summary: A Python package to read and write files in CDM format. Customized for SkyPoint use cases.
Provides: python-cdm-connector
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-cdm-connector
# skypoint-python-cdm-connector
Python Spark CDM Connector by SkyPoint.
Apache Spark connector for the Microsoft Azure "Common Data Model". Reading and writing is supported and it is a work in progress. Please file issues for any bugs that you find.
For more information about the Azure Common Data Model, check out [this page](https://docs.microsoft.com/en-us/common-data-model/data-lake). <br>
We support Azure Data Lake Service (ADLS) and AWS S3 as storage, historical data preservation using snapshots of the schema & data files and usage within PySpark, Azure Functions etc.
*Upcoming Support for incremental data refresh handling, [CDM 1.1](https://docs.microsoft.com/en-us/common-data-model/cdm-manifest and Google Cloud (Cloud Storage). <br>
## Example
1. Please look into the sample usage file skypoint_python_cdm.py
2. Dynamically add/remove entities, annotations and attributes
3. Pass Reader and Writer object for any storage account you like to write/read data to/from.
4. Check out the below code for basic read and write examples.
```python
# Initialize empty model
m = Model()
# Sample dataframe
df = {"country": ["Brazil", "Russia", "India", "China", "South Africa", "ParaSF"],
"currentTime": [datetime.now(), datetime.now(), datetime.now(), datetime.now(), datetime.now(), datetime.now()],
"area": [8.516, 17.10, 3.286, 9.597, 1.221, 2.222],
"capital": ["Brasilia", "Moscow", "New Dehli", "Beijing", "Pretoria", "ParaSF"],
"population": [200.4, 143.5, 1252, 1357, 52.98, 12.34] }
df = pd.DataFrame(df)
# Generate entity from the dataframe
entity = Model.generate_entity(df, "customEntity")
# Add generated entity to model
m.add_entity(entity)
# Add model level annotation
# Annotation can be added at entity level as well as attribute level
Model.add_annotation("modelJsonAnnotation", "modelJsonAnnotationValue", m)
# Create an ADLSWriter to write into ADLS
writer = ADLSWriter("ACCOUNT_NAME", "ACCOUNT_KEY",
"CONTAINER_NAME", "STORAGE_NAME", "DATAFLOW_NAME")
# Write data as well as model.json in ADLS storage
m.write_to_storage("customEntity", df, writer)
```
## Contributing
This project welcomes contributions and suggestions.
## References
[Model.json version1 schema](https://github.com/microsoft/CDM/blob/master/docs/schema/modeljsonschema.json)
[A clean implementation for Python Objects from/to model.json file](https://github.com/Azure-Samples/cdm-azure-data-services-integration/blob/master/CDM/python/CdmModel.py)
%package help
Summary: Development documents and examples for cdm-connector
Provides: python3-cdm-connector-doc
%description help
# skypoint-python-cdm-connector
Python Spark CDM Connector by SkyPoint.
Apache Spark connector for the Microsoft Azure "Common Data Model". Reading and writing is supported and it is a work in progress. Please file issues for any bugs that you find.
For more information about the Azure Common Data Model, check out [this page](https://docs.microsoft.com/en-us/common-data-model/data-lake). <br>
We support Azure Data Lake Service (ADLS) and AWS S3 as storage, historical data preservation using snapshots of the schema & data files and usage within PySpark, Azure Functions etc.
*Upcoming Support for incremental data refresh handling, [CDM 1.1](https://docs.microsoft.com/en-us/common-data-model/cdm-manifest and Google Cloud (Cloud Storage). <br>
## Example
1. Please look into the sample usage file skypoint_python_cdm.py
2. Dynamically add/remove entities, annotations and attributes
3. Pass Reader and Writer object for any storage account you like to write/read data to/from.
4. Check out the below code for basic read and write examples.
```python
# Initialize empty model
m = Model()
# Sample dataframe
df = {"country": ["Brazil", "Russia", "India", "China", "South Africa", "ParaSF"],
"currentTime": [datetime.now(), datetime.now(), datetime.now(), datetime.now(), datetime.now(), datetime.now()],
"area": [8.516, 17.10, 3.286, 9.597, 1.221, 2.222],
"capital": ["Brasilia", "Moscow", "New Dehli", "Beijing", "Pretoria", "ParaSF"],
"population": [200.4, 143.5, 1252, 1357, 52.98, 12.34] }
df = pd.DataFrame(df)
# Generate entity from the dataframe
entity = Model.generate_entity(df, "customEntity")
# Add generated entity to model
m.add_entity(entity)
# Add model level annotation
# Annotation can be added at entity level as well as attribute level
Model.add_annotation("modelJsonAnnotation", "modelJsonAnnotationValue", m)
# Create an ADLSWriter to write into ADLS
writer = ADLSWriter("ACCOUNT_NAME", "ACCOUNT_KEY",
"CONTAINER_NAME", "STORAGE_NAME", "DATAFLOW_NAME")
# Write data as well as model.json in ADLS storage
m.write_to_storage("customEntity", df, writer)
```
## Contributing
This project welcomes contributions and suggestions.
## References
[Model.json version1 schema](https://github.com/microsoft/CDM/blob/master/docs/schema/modeljsonschema.json)
[A clean implementation for Python Objects from/to model.json file](https://github.com/Azure-Samples/cdm-azure-data-services-integration/blob/master/CDM/python/CdmModel.py)
%prep
%autosetup -n cdm-connector-0.0.6.70
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-cdm-connector -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.6.70-1
- Package Spec generated
|