diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-10 05:44:49 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-10 05:44:49 +0000 |
commit | 44744710b0f77ed839f2fb92bb47f68d763ff16c (patch) | |
tree | e999d8e7e63686dbeed38b61bd4456ef9349bbab | |
parent | 07f50b4e88659ee5f47d587e027e96ba8a06264e (diff) |
automatic import of python-celerite2openeuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-celerite2.spec | 181 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 183 insertions, 0 deletions
@@ -0,0 +1 @@ +/celerite2-0.2.1.tar.gz diff --git a/python-celerite2.spec b/python-celerite2.spec new file mode 100644 index 0000000..5e39f40 --- /dev/null +++ b/python-celerite2.spec @@ -0,0 +1,181 @@ +%global _empty_manifest_terminate_build 0 +Name: python-celerite2 +Version: 0.2.1 +Release: 1 +Summary: Fast and scalable Gaussian Processes in 1D +License: MIT +URL: https://celerite2.readthedocs.io +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/8c/1d/89293a96e3f99e6a30ce1405c4232200c1f9ba1a14253f91827a39b1a90a/celerite2-0.2.1.tar.gz + +Requires: python3-numpy +Requires: python3-isort +Requires: python3-black +Requires: python3-black-nbconvert +Requires: python3-coverage[toml] +Requires: python3-pytest +Requires: python3-pytest-cov +Requires: python3-scipy +Requires: python3-celerite +Requires: python3-pep517 +Requires: python3-twine +Requires: python3-pre-commit +Requires: python3-nbstripout +Requires: python3-flake8 +Requires: python3-sphinx +Requires: python3-sphinx-material +Requires: python3-sphinx-copybutton +Requires: python3-rtds-action +Requires: python3-nbsphinx +Requires: python3-breathe +Requires: python3-ipython +Requires: python3-jax +Requires: python3-jaxlib +Requires: python3-pymc3 +Requires: python3-aesara-theano-fallback +Requires: python3-pep517 +Requires: python3-twine +Requires: python3-isort +Requires: python3-black +Requires: python3-black-nbconvert +Requires: python3-coverage[toml] +Requires: python3-pytest +Requires: python3-pytest-cov +Requires: python3-scipy +Requires: python3-celerite +Requires: python3-pymc3 +Requires: python3-aesara-theano-fallback +Requires: python3-jupytext +Requires: python3-jupyter +Requires: python3-nbconvert +Requires: python3-matplotlib +Requires: python3-scipy +Requires: python3-emcee +Requires: python3-pymc3 +Requires: python3-aesara-theano-fallback +Requires: python3-tqdm +Requires: python3-numpyro + +%description +# celerite2 + +_celerite_ is an algorithm for fast and scalable Gaussian Process (GP) +Regression in one dimension and this library, _celerite2_ is a re-write of the +original [celerite project](https://celerite.readthedocs.io) to improve +numerical stability and integration with various machine learning frameworks. Documentation +for this version can be found [here](https://celerite2.readthedocs.io/en/latest/). +This new implementation includes interfaces in Python and C++, with full support for +Theano/PyMC3 and JAX. + +This documentation won't teach you the fundamentals of GP modeling but the best +resource for learning about this is available for free online: [Rasmussen & +Williams (2006)](http://www.gaussianprocess.org/gpml/). Similarly, the +_celerite_ algorithm is restricted to a specific class of covariance functions +(see [the original paper](https://arxiv.org/abs/1703.09710) for more information +and [a recent generalization](https://arxiv.org/abs/2007.05799) for extensions +to structured two-dimensional data). If you need scalable GPs with more general +covariance functions, [GPyTorch](https://gpytorch.ai/) might be a good choice. + + + + +%package -n python3-celerite2 +Summary: Fast and scalable Gaussian Processes in 1D +Provides: python-celerite2 +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +BuildRequires: python3-cffi +BuildRequires: gcc +BuildRequires: gdb +%description -n python3-celerite2 +# celerite2 + +_celerite_ is an algorithm for fast and scalable Gaussian Process (GP) +Regression in one dimension and this library, _celerite2_ is a re-write of the +original [celerite project](https://celerite.readthedocs.io) to improve +numerical stability and integration with various machine learning frameworks. Documentation +for this version can be found [here](https://celerite2.readthedocs.io/en/latest/). +This new implementation includes interfaces in Python and C++, with full support for +Theano/PyMC3 and JAX. + +This documentation won't teach you the fundamentals of GP modeling but the best +resource for learning about this is available for free online: [Rasmussen & +Williams (2006)](http://www.gaussianprocess.org/gpml/). Similarly, the +_celerite_ algorithm is restricted to a specific class of covariance functions +(see [the original paper](https://arxiv.org/abs/1703.09710) for more information +and [a recent generalization](https://arxiv.org/abs/2007.05799) for extensions +to structured two-dimensional data). If you need scalable GPs with more general +covariance functions, [GPyTorch](https://gpytorch.ai/) might be a good choice. + + + + +%package help +Summary: Development documents and examples for celerite2 +Provides: python3-celerite2-doc +%description help +# celerite2 + +_celerite_ is an algorithm for fast and scalable Gaussian Process (GP) +Regression in one dimension and this library, _celerite2_ is a re-write of the +original [celerite project](https://celerite.readthedocs.io) to improve +numerical stability and integration with various machine learning frameworks. Documentation +for this version can be found [here](https://celerite2.readthedocs.io/en/latest/). +This new implementation includes interfaces in Python and C++, with full support for +Theano/PyMC3 and JAX. + +This documentation won't teach you the fundamentals of GP modeling but the best +resource for learning about this is available for free online: [Rasmussen & +Williams (2006)](http://www.gaussianprocess.org/gpml/). Similarly, the +_celerite_ algorithm is restricted to a specific class of covariance functions +(see [the original paper](https://arxiv.org/abs/1703.09710) for more information +and [a recent generalization](https://arxiv.org/abs/2007.05799) for extensions +to structured two-dimensional data). If you need scalable GPs with more general +covariance functions, [GPyTorch](https://gpytorch.ai/) might be a good choice. + + + + +%prep +%autosetup -n celerite2-0.2.1 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-celerite2 -f filelist.lst +%dir %{python3_sitearch}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.1-1 +- Package Spec generated @@ -0,0 +1 @@ +653a2d63cd88421f3a5b4cfcb242f534 celerite2-0.2.1.tar.gz |