summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-10 05:44:49 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-10 05:44:49 +0000
commit44744710b0f77ed839f2fb92bb47f68d763ff16c (patch)
treee999d8e7e63686dbeed38b61bd4456ef9349bbab
parent07f50b4e88659ee5f47d587e027e96ba8a06264e (diff)
automatic import of python-celerite2openeuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-celerite2.spec181
-rw-r--r--sources1
3 files changed, 183 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..cf834e2 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/celerite2-0.2.1.tar.gz
diff --git a/python-celerite2.spec b/python-celerite2.spec
new file mode 100644
index 0000000..5e39f40
--- /dev/null
+++ b/python-celerite2.spec
@@ -0,0 +1,181 @@
+%global _empty_manifest_terminate_build 0
+Name: python-celerite2
+Version: 0.2.1
+Release: 1
+Summary: Fast and scalable Gaussian Processes in 1D
+License: MIT
+URL: https://celerite2.readthedocs.io
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/8c/1d/89293a96e3f99e6a30ce1405c4232200c1f9ba1a14253f91827a39b1a90a/celerite2-0.2.1.tar.gz
+
+Requires: python3-numpy
+Requires: python3-isort
+Requires: python3-black
+Requires: python3-black-nbconvert
+Requires: python3-coverage[toml]
+Requires: python3-pytest
+Requires: python3-pytest-cov
+Requires: python3-scipy
+Requires: python3-celerite
+Requires: python3-pep517
+Requires: python3-twine
+Requires: python3-pre-commit
+Requires: python3-nbstripout
+Requires: python3-flake8
+Requires: python3-sphinx
+Requires: python3-sphinx-material
+Requires: python3-sphinx-copybutton
+Requires: python3-rtds-action
+Requires: python3-nbsphinx
+Requires: python3-breathe
+Requires: python3-ipython
+Requires: python3-jax
+Requires: python3-jaxlib
+Requires: python3-pymc3
+Requires: python3-aesara-theano-fallback
+Requires: python3-pep517
+Requires: python3-twine
+Requires: python3-isort
+Requires: python3-black
+Requires: python3-black-nbconvert
+Requires: python3-coverage[toml]
+Requires: python3-pytest
+Requires: python3-pytest-cov
+Requires: python3-scipy
+Requires: python3-celerite
+Requires: python3-pymc3
+Requires: python3-aesara-theano-fallback
+Requires: python3-jupytext
+Requires: python3-jupyter
+Requires: python3-nbconvert
+Requires: python3-matplotlib
+Requires: python3-scipy
+Requires: python3-emcee
+Requires: python3-pymc3
+Requires: python3-aesara-theano-fallback
+Requires: python3-tqdm
+Requires: python3-numpyro
+
+%description
+# celerite2
+
+_celerite_ is an algorithm for fast and scalable Gaussian Process (GP)
+Regression in one dimension and this library, _celerite2_ is a re-write of the
+original [celerite project](https://celerite.readthedocs.io) to improve
+numerical stability and integration with various machine learning frameworks. Documentation
+for this version can be found [here](https://celerite2.readthedocs.io/en/latest/).
+This new implementation includes interfaces in Python and C++, with full support for
+Theano/PyMC3 and JAX.
+
+This documentation won't teach you the fundamentals of GP modeling but the best
+resource for learning about this is available for free online: [Rasmussen &
+Williams (2006)](http://www.gaussianprocess.org/gpml/). Similarly, the
+_celerite_ algorithm is restricted to a specific class of covariance functions
+(see [the original paper](https://arxiv.org/abs/1703.09710) for more information
+and [a recent generalization](https://arxiv.org/abs/2007.05799) for extensions
+to structured two-dimensional data). If you need scalable GPs with more general
+covariance functions, [GPyTorch](https://gpytorch.ai/) might be a good choice.
+
+
+
+
+%package -n python3-celerite2
+Summary: Fast and scalable Gaussian Processes in 1D
+Provides: python-celerite2
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+BuildRequires: python3-cffi
+BuildRequires: gcc
+BuildRequires: gdb
+%description -n python3-celerite2
+# celerite2
+
+_celerite_ is an algorithm for fast and scalable Gaussian Process (GP)
+Regression in one dimension and this library, _celerite2_ is a re-write of the
+original [celerite project](https://celerite.readthedocs.io) to improve
+numerical stability and integration with various machine learning frameworks. Documentation
+for this version can be found [here](https://celerite2.readthedocs.io/en/latest/).
+This new implementation includes interfaces in Python and C++, with full support for
+Theano/PyMC3 and JAX.
+
+This documentation won't teach you the fundamentals of GP modeling but the best
+resource for learning about this is available for free online: [Rasmussen &
+Williams (2006)](http://www.gaussianprocess.org/gpml/). Similarly, the
+_celerite_ algorithm is restricted to a specific class of covariance functions
+(see [the original paper](https://arxiv.org/abs/1703.09710) for more information
+and [a recent generalization](https://arxiv.org/abs/2007.05799) for extensions
+to structured two-dimensional data). If you need scalable GPs with more general
+covariance functions, [GPyTorch](https://gpytorch.ai/) might be a good choice.
+
+
+
+
+%package help
+Summary: Development documents and examples for celerite2
+Provides: python3-celerite2-doc
+%description help
+# celerite2
+
+_celerite_ is an algorithm for fast and scalable Gaussian Process (GP)
+Regression in one dimension and this library, _celerite2_ is a re-write of the
+original [celerite project](https://celerite.readthedocs.io) to improve
+numerical stability and integration with various machine learning frameworks. Documentation
+for this version can be found [here](https://celerite2.readthedocs.io/en/latest/).
+This new implementation includes interfaces in Python and C++, with full support for
+Theano/PyMC3 and JAX.
+
+This documentation won't teach you the fundamentals of GP modeling but the best
+resource for learning about this is available for free online: [Rasmussen &
+Williams (2006)](http://www.gaussianprocess.org/gpml/). Similarly, the
+_celerite_ algorithm is restricted to a specific class of covariance functions
+(see [the original paper](https://arxiv.org/abs/1703.09710) for more information
+and [a recent generalization](https://arxiv.org/abs/2007.05799) for extensions
+to structured two-dimensional data). If you need scalable GPs with more general
+covariance functions, [GPyTorch](https://gpytorch.ai/) might be a good choice.
+
+
+
+
+%prep
+%autosetup -n celerite2-0.2.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-celerite2 -f filelist.lst
+%dir %{python3_sitearch}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..5be6e2b
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+653a2d63cd88421f3a5b4cfcb242f534 celerite2-0.2.1.tar.gz