summaryrefslogtreecommitdiff
path: root/python-cg-fluffy.spec
blob: 37bf9fe34bd7aadd00773dea80235c7699781bff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
%global _empty_manifest_terminate_build 0
Name:		python-cg-fluffy
Version:	3.2.0
Release:	1
Summary:	NIPT analysis pipeline
License:	MIT
URL:		https://github.com/Clinical-Genomics/fluffy
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/4b/1d/29e5a919194598b9befab33f602c8711b330b02de20bd13b02b2551e623a/cg-fluffy-3.2.0.tar.gz
BuildArch:	noarch

Requires:	python3-click
Requires:	python3-coloredlogs
Requires:	python3-slurmpy
Requires:	python3-pyyaml
Requires:	python3-numpy

%description

![Build](https://github.com/Clinical-Genomics/fluffy/workflows/Build/badge.svg)
[![codecov](https://codecov.io/gh/Clinical-Genomics/fluffy/branch/master/graph/badge.svg)](https://codecov.io/gh/Clinical-Genomics/fluffy)
# FluFFyPipe
NIPT analysis pipeline, using WisecondorX for detecting aneuplodies and large CNVs, AMYCNE for FFY and PREFACE for FF prediction (optional). FluFFYPipe produces a variety of output files, as well as a per batch csv summary.

<p align="center">
<img src="https://github.com/J35P312/FluFFyPipe/blob/master/logo/IMG_20200320_132001.jpg" width="400" height="400" >
</p>

# Run FluFFyPipe
Run NIPT analysis, using a previously comnputed reference:

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --analyse

Run NIPT analysis, using an internally computed reference (i.e the reference is built using all samples listed in samplesheet):

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --analyse --batch-ref

optionally, skip preface:

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --skip_preface --analyse

All output will be written to the output folder, this output includes:

```
bam files
wisecondorX output
tiddit coverage summary
Fetal fraction estimation
```

as well as a summary csv and multiqc html (per batch)

the input folder is a project folder containing one folder per sample, each of these subfolders contain the fastq file(s).
The samplesheet contains at least a "sampleID" column, the sampleID should match the subfolders in the input folder. The samplesheet may contain other columns, such as flowcell and index folder: such columns will be printed to the summary csv.
If the samplesheet contains a SampleName column, fluffy will name the output according to SampleName

Create a WisecondorX reference

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --reference

samplesheet should contain atleast a "sampleID" column. All samples in the samplesheet will be used to construct the reference, visit the WisecondorX manual for more information.
# Optional fluffy parameters:
	Analysis mode:
		--dry_run - run the pipeline without generating files
		-l	-	add paramters to the slurm header of the script, should be given on the following format parameter:value
				example: qos:high 

	Reference mode:
		--dry_run - run the pipeline without generating files

	Rerun mode:
		--dry_run - run the pipeline without generating files

# Troubleshooting and rerun
There are three statuses of the fluffy pipeline:
running, complete, and failed

The status of a fluffy run is found in the

	<output_folder>/analysis_status.json

The status of all jobs are listed in

	<output_folder>/sacct/fluffy_<date>.log.status

Where <date> is the timepoint when the jobs were submitted
Use grep to find the failed jobs:

	grep -v COMPLETE <output_folder>/sacct/fluffy_<date>.log.status

The output logs are stored in:

	 <output_folder>/logs

Before continuing, you may want to generate the summary csv for all completed cases:

	bash <output_folder>/scripts/summarizebatch-<hash>

where <hash> is a randomly generated string.

use the rerun module to rerun failed fluffy analyses:

	fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --skip_preface rerun


# Install FluFFyPipe
FluFFyPipe requires python 3, slurm, slurmpy, and singularity, python-coloredlogs.

fluffy may be installed using pip:

	pip install fluffy-cg

alternatively, fluffy is cloned and installed from github:
	git clone https://github.com/Clinical-Genomics/fluffy
	cd fluffy
	pip install -e .

Next download the FluFFyPipe singularity container

     singularity pull library://jeisfeldt/default/fluffy:sha256.dbef92cd5eab8558c2729f73a191d73a7576a24e9bb44dde7372c0cd405c4ef6 

copy the example config (found in example_config), and edit the variables.
You will need to download/create the following files:

	Reference fasta (indexed using bwa)

	WisecondorX reference files (created using the reference mode)

	PREFACE model file (optional)

	blacklist bed file (used by wisecondorX)

	FluFFyPipe singularity collection (singularity pull --name FluFFyPipe.sif shub://J35P312/FluFFyPipe)







%package -n python3-cg-fluffy
Summary:	NIPT analysis pipeline
Provides:	python-cg-fluffy
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-cg-fluffy

![Build](https://github.com/Clinical-Genomics/fluffy/workflows/Build/badge.svg)
[![codecov](https://codecov.io/gh/Clinical-Genomics/fluffy/branch/master/graph/badge.svg)](https://codecov.io/gh/Clinical-Genomics/fluffy)
# FluFFyPipe
NIPT analysis pipeline, using WisecondorX for detecting aneuplodies and large CNVs, AMYCNE for FFY and PREFACE for FF prediction (optional). FluFFYPipe produces a variety of output files, as well as a per batch csv summary.

<p align="center">
<img src="https://github.com/J35P312/FluFFyPipe/blob/master/logo/IMG_20200320_132001.jpg" width="400" height="400" >
</p>

# Run FluFFyPipe
Run NIPT analysis, using a previously comnputed reference:

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --analyse

Run NIPT analysis, using an internally computed reference (i.e the reference is built using all samples listed in samplesheet):

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --analyse --batch-ref

optionally, skip preface:

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --skip_preface --analyse

All output will be written to the output folder, this output includes:

```
bam files
wisecondorX output
tiddit coverage summary
Fetal fraction estimation
```

as well as a summary csv and multiqc html (per batch)

the input folder is a project folder containing one folder per sample, each of these subfolders contain the fastq file(s).
The samplesheet contains at least a "sampleID" column, the sampleID should match the subfolders in the input folder. The samplesheet may contain other columns, such as flowcell and index folder: such columns will be printed to the summary csv.
If the samplesheet contains a SampleName column, fluffy will name the output according to SampleName

Create a WisecondorX reference

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --reference

samplesheet should contain atleast a "sampleID" column. All samples in the samplesheet will be used to construct the reference, visit the WisecondorX manual for more information.
# Optional fluffy parameters:
	Analysis mode:
		--dry_run - run the pipeline without generating files
		-l	-	add paramters to the slurm header of the script, should be given on the following format parameter:value
				example: qos:high 

	Reference mode:
		--dry_run - run the pipeline without generating files

	Rerun mode:
		--dry_run - run the pipeline without generating files

# Troubleshooting and rerun
There are three statuses of the fluffy pipeline:
running, complete, and failed

The status of a fluffy run is found in the

	<output_folder>/analysis_status.json

The status of all jobs are listed in

	<output_folder>/sacct/fluffy_<date>.log.status

Where <date> is the timepoint when the jobs were submitted
Use grep to find the failed jobs:

	grep -v COMPLETE <output_folder>/sacct/fluffy_<date>.log.status

The output logs are stored in:

	 <output_folder>/logs

Before continuing, you may want to generate the summary csv for all completed cases:

	bash <output_folder>/scripts/summarizebatch-<hash>

where <hash> is a randomly generated string.

use the rerun module to rerun failed fluffy analyses:

	fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --skip_preface rerun


# Install FluFFyPipe
FluFFyPipe requires python 3, slurm, slurmpy, and singularity, python-coloredlogs.

fluffy may be installed using pip:

	pip install fluffy-cg

alternatively, fluffy is cloned and installed from github:
	git clone https://github.com/Clinical-Genomics/fluffy
	cd fluffy
	pip install -e .

Next download the FluFFyPipe singularity container

     singularity pull library://jeisfeldt/default/fluffy:sha256.dbef92cd5eab8558c2729f73a191d73a7576a24e9bb44dde7372c0cd405c4ef6 

copy the example config (found in example_config), and edit the variables.
You will need to download/create the following files:

	Reference fasta (indexed using bwa)

	WisecondorX reference files (created using the reference mode)

	PREFACE model file (optional)

	blacklist bed file (used by wisecondorX)

	FluFFyPipe singularity collection (singularity pull --name FluFFyPipe.sif shub://J35P312/FluFFyPipe)







%package help
Summary:	Development documents and examples for cg-fluffy
Provides:	python3-cg-fluffy-doc
%description help

![Build](https://github.com/Clinical-Genomics/fluffy/workflows/Build/badge.svg)
[![codecov](https://codecov.io/gh/Clinical-Genomics/fluffy/branch/master/graph/badge.svg)](https://codecov.io/gh/Clinical-Genomics/fluffy)
# FluFFyPipe
NIPT analysis pipeline, using WisecondorX for detecting aneuplodies and large CNVs, AMYCNE for FFY and PREFACE for FF prediction (optional). FluFFYPipe produces a variety of output files, as well as a per batch csv summary.

<p align="center">
<img src="https://github.com/J35P312/FluFFyPipe/blob/master/logo/IMG_20200320_132001.jpg" width="400" height="400" >
</p>

# Run FluFFyPipe
Run NIPT analysis, using a previously comnputed reference:

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --analyse

Run NIPT analysis, using an internally computed reference (i.e the reference is built using all samples listed in samplesheet):

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --analyse --batch-ref

optionally, skip preface:

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --skip_preface --analyse

All output will be written to the output folder, this output includes:

```
bam files
wisecondorX output
tiddit coverage summary
Fetal fraction estimation
```

as well as a summary csv and multiqc html (per batch)

the input folder is a project folder containing one folder per sample, each of these subfolders contain the fastq file(s).
The samplesheet contains at least a "sampleID" column, the sampleID should match the subfolders in the input folder. The samplesheet may contain other columns, such as flowcell and index folder: such columns will be printed to the summary csv.
If the samplesheet contains a SampleName column, fluffy will name the output according to SampleName

Create a WisecondorX reference

    fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --reference

samplesheet should contain atleast a "sampleID" column. All samples in the samplesheet will be used to construct the reference, visit the WisecondorX manual for more information.
# Optional fluffy parameters:
	Analysis mode:
		--dry_run - run the pipeline without generating files
		-l	-	add paramters to the slurm header of the script, should be given on the following format parameter:value
				example: qos:high 

	Reference mode:
		--dry_run - run the pipeline without generating files

	Rerun mode:
		--dry_run - run the pipeline without generating files

# Troubleshooting and rerun
There are three statuses of the fluffy pipeline:
running, complete, and failed

The status of a fluffy run is found in the

	<output_folder>/analysis_status.json

The status of all jobs are listed in

	<output_folder>/sacct/fluffy_<date>.log.status

Where <date> is the timepoint when the jobs were submitted
Use grep to find the failed jobs:

	grep -v COMPLETE <output_folder>/sacct/fluffy_<date>.log.status

The output logs are stored in:

	 <output_folder>/logs

Before continuing, you may want to generate the summary csv for all completed cases:

	bash <output_folder>/scripts/summarizebatch-<hash>

where <hash> is a randomly generated string.

use the rerun module to rerun failed fluffy analyses:

	fluffy --sample <samplesheet>  --project <input_folder> --out <output_folder> --skip_preface rerun


# Install FluFFyPipe
FluFFyPipe requires python 3, slurm, slurmpy, and singularity, python-coloredlogs.

fluffy may be installed using pip:

	pip install fluffy-cg

alternatively, fluffy is cloned and installed from github:
	git clone https://github.com/Clinical-Genomics/fluffy
	cd fluffy
	pip install -e .

Next download the FluFFyPipe singularity container

     singularity pull library://jeisfeldt/default/fluffy:sha256.dbef92cd5eab8558c2729f73a191d73a7576a24e9bb44dde7372c0cd405c4ef6 

copy the example config (found in example_config), and edit the variables.
You will need to download/create the following files:

	Reference fasta (indexed using bwa)

	WisecondorX reference files (created using the reference mode)

	PREFACE model file (optional)

	blacklist bed file (used by wisecondorX)

	FluFFyPipe singularity collection (singularity pull --name FluFFyPipe.sif shub://J35P312/FluFFyPipe)







%prep
%autosetup -n cg-fluffy-3.2.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-cg-fluffy -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 3.2.0-1
- Package Spec generated