1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
%global _empty_manifest_terminate_build 0
Name: python-chi2comb
Version: 0.1.0
Release: 1
Summary: Linear combination of independent noncentral chi-squared random variables
License: MIT
URL: https://github.com/limix/chi2comb-py
Source0: https://mirrors.aliyun.com/pypi/web/packages/bf/5c/7f5d45ff036085c4b623d79cfbf27f3623972c23682968c320d83ec3957b/chi2comb-0.1.0.tar.gz
Requires: python3-cffi
Requires: python3-pytest
Requires: python3-pytest-doctestplus
%description
# chi2comb
[](https://travis-ci.com/limix/chi2comb-py) [](https://ci.appveyor.com/project/Horta/chi2comb-py)
This package estimates cumulative density functions of linear combinations of
independent noncentral χ² random variables and a standard Normal distribution.
Formally, it estimates P[Q<q], where:
Q = λ₁X₁ + ... + λₙXₙ + σX₀.
Xᵢ (𝚒≠𝟶) is an independent random variable following a noncentral χ² distribution with
nᵢ degrees of freedom and noncentrality parameter λᵢ.
X₀ is an independent random variable having a standard Normal distribution.
## Install
It can be installed using the pip command
```bash
pip install chi2comb
```
## Usage
Consider the following linear combination of four random variables:
Q = 6⋅X₁ + 3⋅X₂ + 1⋅X₃ + 2⋅X₀,
where X₁, X₂, and X₃ are noncentral χ² random variables having degrees of freedom
n₁=n₂=1 and n₃=2 and noncentrality parameters λ₁=0.5 and λ₂=λ₃=0.
Let us estimate P[Q<1]:
```python
>>> from chi2comb import chi2comb_cdf, ChiSquared
>>>
>>> gcoef = 2
>>> ncents = [0.5, 0, 0]
>>> q = 1
>>> dofs = [1, 1, 2]
>>> coefs = [6, 3, 1]
>>> chi2s = [ChiSquared(coefs[i], ncents[i], dofs[i]) for i in range(3)]
>>> result, errno, info = chi2comb_cdf(q, chi2s, gcoef)
>>> result
0.050870657088644244
>>> errno
0
>>> info
Info(emag=0.6430413191446991, niterms=43, nints=1, intv=0.03462571527167856, truc=1.4608856930426104, sd=0.0, ncycles=21)
```
The estimated value is P[Q<1] ≈ 0.0587.
## Problems
If you encounter any issue, please, [submit it](https://github.com/limix/chi2comb-py/issues/new).
## Authors
* [Danilo Horta](https://github.com/horta)
## License
This project is licensed under the [MIT License](https://raw.githubusercontent.com/limix/chi2comb-py/master/LICENSE.md).
%package -n python3-chi2comb
Summary: Linear combination of independent noncentral chi-squared random variables
Provides: python-chi2comb
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-chi2comb
# chi2comb
[](https://travis-ci.com/limix/chi2comb-py) [](https://ci.appveyor.com/project/Horta/chi2comb-py)
This package estimates cumulative density functions of linear combinations of
independent noncentral χ² random variables and a standard Normal distribution.
Formally, it estimates P[Q<q], where:
Q = λ₁X₁ + ... + λₙXₙ + σX₀.
Xᵢ (𝚒≠𝟶) is an independent random variable following a noncentral χ² distribution with
nᵢ degrees of freedom and noncentrality parameter λᵢ.
X₀ is an independent random variable having a standard Normal distribution.
## Install
It can be installed using the pip command
```bash
pip install chi2comb
```
## Usage
Consider the following linear combination of four random variables:
Q = 6⋅X₁ + 3⋅X₂ + 1⋅X₃ + 2⋅X₀,
where X₁, X₂, and X₃ are noncentral χ² random variables having degrees of freedom
n₁=n₂=1 and n₃=2 and noncentrality parameters λ₁=0.5 and λ₂=λ₃=0.
Let us estimate P[Q<1]:
```python
>>> from chi2comb import chi2comb_cdf, ChiSquared
>>>
>>> gcoef = 2
>>> ncents = [0.5, 0, 0]
>>> q = 1
>>> dofs = [1, 1, 2]
>>> coefs = [6, 3, 1]
>>> chi2s = [ChiSquared(coefs[i], ncents[i], dofs[i]) for i in range(3)]
>>> result, errno, info = chi2comb_cdf(q, chi2s, gcoef)
>>> result
0.050870657088644244
>>> errno
0
>>> info
Info(emag=0.6430413191446991, niterms=43, nints=1, intv=0.03462571527167856, truc=1.4608856930426104, sd=0.0, ncycles=21)
```
The estimated value is P[Q<1] ≈ 0.0587.
## Problems
If you encounter any issue, please, [submit it](https://github.com/limix/chi2comb-py/issues/new).
## Authors
* [Danilo Horta](https://github.com/horta)
## License
This project is licensed under the [MIT License](https://raw.githubusercontent.com/limix/chi2comb-py/master/LICENSE.md).
%package help
Summary: Development documents and examples for chi2comb
Provides: python3-chi2comb-doc
%description help
# chi2comb
[](https://travis-ci.com/limix/chi2comb-py) [](https://ci.appveyor.com/project/Horta/chi2comb-py)
This package estimates cumulative density functions of linear combinations of
independent noncentral χ² random variables and a standard Normal distribution.
Formally, it estimates P[Q<q], where:
Q = λ₁X₁ + ... + λₙXₙ + σX₀.
Xᵢ (𝚒≠𝟶) is an independent random variable following a noncentral χ² distribution with
nᵢ degrees of freedom and noncentrality parameter λᵢ.
X₀ is an independent random variable having a standard Normal distribution.
## Install
It can be installed using the pip command
```bash
pip install chi2comb
```
## Usage
Consider the following linear combination of four random variables:
Q = 6⋅X₁ + 3⋅X₂ + 1⋅X₃ + 2⋅X₀,
where X₁, X₂, and X₃ are noncentral χ² random variables having degrees of freedom
n₁=n₂=1 and n₃=2 and noncentrality parameters λ₁=0.5 and λ₂=λ₃=0.
Let us estimate P[Q<1]:
```python
>>> from chi2comb import chi2comb_cdf, ChiSquared
>>>
>>> gcoef = 2
>>> ncents = [0.5, 0, 0]
>>> q = 1
>>> dofs = [1, 1, 2]
>>> coefs = [6, 3, 1]
>>> chi2s = [ChiSquared(coefs[i], ncents[i], dofs[i]) for i in range(3)]
>>> result, errno, info = chi2comb_cdf(q, chi2s, gcoef)
>>> result
0.050870657088644244
>>> errno
0
>>> info
Info(emag=0.6430413191446991, niterms=43, nints=1, intv=0.03462571527167856, truc=1.4608856930426104, sd=0.0, ncycles=21)
```
The estimated value is P[Q<1] ≈ 0.0587.
## Problems
If you encounter any issue, please, [submit it](https://github.com/limix/chi2comb-py/issues/new).
## Authors
* [Danilo Horta](https://github.com/horta)
## License
This project is licensed under the [MIT License](https://raw.githubusercontent.com/limix/chi2comb-py/master/LICENSE.md).
%prep
%autosetup -n chi2comb-0.1.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-chi2comb -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.0-1
- Package Spec generated
|