summaryrefslogtreecommitdiff
path: root/python-chia.spec
blob: 22c34c12a1a2260c85ccb5180f2d79f3310191bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
%global _empty_manifest_terminate_build 0
Name:		python-chia
Version:	2.5.0
Release:	1
Summary:	Concept Hierarchies for Incremental and Active Learning
License:	BSD License
URL:		https://github.com/cabrust/chia
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/6b/3c/5d34b6146b2a6e437795093e1c5b16b3fa86cf661ae4fba5d9da5ad6c1f3/chia-2.5.0.tar.gz
BuildArch:	noarch

Requires:	python3-configuration
Requires:	python3-nltk
Requires:	python3-imageio
Requires:	python3-pillow
Requires:	python3-gputil
Requires:	python3-networkx
Requires:	python3-numpy
Requires:	python3-tensorflow-addons
Requires:	python3-tensorflow

%description
# CHIA: Concept Hierarchies for Incremental and Active Learning
![PyPI](https://img.shields.io/pypi/v/chia)
![PyPI - License](https://img.shields.io/pypi/l/chia)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/chia)
![Code Climate maintainability](https://img.shields.io/codeclimate/maintainability/cabrust/chia)
![codecov](https://codecov.io/gh/cabrust/chia/branch/main/graph/badge.svg)

CHIA implements methods centered around hierarchical classification in a lifelong learning environment.
It forms the basis for some of the experiments and tools developed at [Computer Vision Group Jena](http://www.inf-cv.uni-jena.de/).
Development is continued at the [DLR Institute of Data Science](https://www.dlr.de/dw/en/desktopdefault.aspx/tabid-12192/21400_read-49437/)

**Methods**\
CHIA implements:
 * **One-Hot Softmax Classifier** as a baseline.
 * **Probabilistic Hierarchical Classifier** Brust, C. A., & Denzler, J. (2019). *Integrating domain knowledge: using hierarchies to improve deep classifiers*. In Asian Conference on Pattern Recognition (ACPR)
 * **CHILLAX** Brust, C. A., Barz, B., & Denzler, J. (2021). *Making Every Label Count: Handling Semantic Imprecision by Integrating Domain Knowledge*. In International Conference on Pattern Recognition (ICPR).
 * **Self-Supervised CHILLAX** Brust, C. A., Barz, B., & Denzler, J. (2022). *Self-Supervised Learning from Semantically Imprecise Data*. In Computer Vision Theory and Applications (VISAPP)
 * **Semantic Label Sharing** Fergus, R., Bernal, H., Weiss, Y., & Torralba, A. (2010). *Semantic label sharing for learning with many categories*. In European Conference on Computer Vision (ECCV).

**Datasets**\
CHIA has integrated support including hierarchies for a number of popular datasets. See [here](docs/architecture.md#dataset) for a complete list.


## Installation and Getting Started
CHIA is available on PyPI. To install, simply run:
```bash
pip install chia
```
or clone this repository, and run:
```bash
pip install -e .
```

To run the [example experiment](examples/experiment.py) which makes sure that everything works, use the following command:
```bash
python examples/experiment.py examples/configuration.json
```
After a few minutes, the last lines of output should look like this:
```text
[SHUTDOWN] [Experiment] Successful: True
```

## Documentation
The following articles explain more about CHIA:
 * [Architecture](docs/architecture.md) explains the overall construction. It also includes reference descriptions of most classes.
 * [Configuration](docs/configuration.md) describes how experiments and CHIA itself are configured.
 * [Using your own dataset](docs/dataset.md) explains our JSON format for adding your own data.

## Citation
If you use CHIA for your research, kindly cite:
> Brust, C. A., & Denzler, J. (2019). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition. Springer, Cham.

You can refer to the following BibTeX:
```bibtex
@inproceedings{Brust2019IDK,
author = {Clemens-Alexander Brust and Joachim Denzler},
booktitle = {Asian Conference on Pattern Recognition (ACPR)},
title = {Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers},
year = {2019},
doi = {10.1007/978-3-030-41404-7_1}
}
```




%package -n python3-chia
Summary:	Concept Hierarchies for Incremental and Active Learning
Provides:	python-chia
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-chia
# CHIA: Concept Hierarchies for Incremental and Active Learning
![PyPI](https://img.shields.io/pypi/v/chia)
![PyPI - License](https://img.shields.io/pypi/l/chia)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/chia)
![Code Climate maintainability](https://img.shields.io/codeclimate/maintainability/cabrust/chia)
![codecov](https://codecov.io/gh/cabrust/chia/branch/main/graph/badge.svg)

CHIA implements methods centered around hierarchical classification in a lifelong learning environment.
It forms the basis for some of the experiments and tools developed at [Computer Vision Group Jena](http://www.inf-cv.uni-jena.de/).
Development is continued at the [DLR Institute of Data Science](https://www.dlr.de/dw/en/desktopdefault.aspx/tabid-12192/21400_read-49437/)

**Methods**\
CHIA implements:
 * **One-Hot Softmax Classifier** as a baseline.
 * **Probabilistic Hierarchical Classifier** Brust, C. A., & Denzler, J. (2019). *Integrating domain knowledge: using hierarchies to improve deep classifiers*. In Asian Conference on Pattern Recognition (ACPR)
 * **CHILLAX** Brust, C. A., Barz, B., & Denzler, J. (2021). *Making Every Label Count: Handling Semantic Imprecision by Integrating Domain Knowledge*. In International Conference on Pattern Recognition (ICPR).
 * **Self-Supervised CHILLAX** Brust, C. A., Barz, B., & Denzler, J. (2022). *Self-Supervised Learning from Semantically Imprecise Data*. In Computer Vision Theory and Applications (VISAPP)
 * **Semantic Label Sharing** Fergus, R., Bernal, H., Weiss, Y., & Torralba, A. (2010). *Semantic label sharing for learning with many categories*. In European Conference on Computer Vision (ECCV).

**Datasets**\
CHIA has integrated support including hierarchies for a number of popular datasets. See [here](docs/architecture.md#dataset) for a complete list.


## Installation and Getting Started
CHIA is available on PyPI. To install, simply run:
```bash
pip install chia
```
or clone this repository, and run:
```bash
pip install -e .
```

To run the [example experiment](examples/experiment.py) which makes sure that everything works, use the following command:
```bash
python examples/experiment.py examples/configuration.json
```
After a few minutes, the last lines of output should look like this:
```text
[SHUTDOWN] [Experiment] Successful: True
```

## Documentation
The following articles explain more about CHIA:
 * [Architecture](docs/architecture.md) explains the overall construction. It also includes reference descriptions of most classes.
 * [Configuration](docs/configuration.md) describes how experiments and CHIA itself are configured.
 * [Using your own dataset](docs/dataset.md) explains our JSON format for adding your own data.

## Citation
If you use CHIA for your research, kindly cite:
> Brust, C. A., & Denzler, J. (2019). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition. Springer, Cham.

You can refer to the following BibTeX:
```bibtex
@inproceedings{Brust2019IDK,
author = {Clemens-Alexander Brust and Joachim Denzler},
booktitle = {Asian Conference on Pattern Recognition (ACPR)},
title = {Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers},
year = {2019},
doi = {10.1007/978-3-030-41404-7_1}
}
```




%package help
Summary:	Development documents and examples for chia
Provides:	python3-chia-doc
%description help
# CHIA: Concept Hierarchies for Incremental and Active Learning
![PyPI](https://img.shields.io/pypi/v/chia)
![PyPI - License](https://img.shields.io/pypi/l/chia)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/chia)
![Code Climate maintainability](https://img.shields.io/codeclimate/maintainability/cabrust/chia)
![codecov](https://codecov.io/gh/cabrust/chia/branch/main/graph/badge.svg)

CHIA implements methods centered around hierarchical classification in a lifelong learning environment.
It forms the basis for some of the experiments and tools developed at [Computer Vision Group Jena](http://www.inf-cv.uni-jena.de/).
Development is continued at the [DLR Institute of Data Science](https://www.dlr.de/dw/en/desktopdefault.aspx/tabid-12192/21400_read-49437/)

**Methods**\
CHIA implements:
 * **One-Hot Softmax Classifier** as a baseline.
 * **Probabilistic Hierarchical Classifier** Brust, C. A., & Denzler, J. (2019). *Integrating domain knowledge: using hierarchies to improve deep classifiers*. In Asian Conference on Pattern Recognition (ACPR)
 * **CHILLAX** Brust, C. A., Barz, B., & Denzler, J. (2021). *Making Every Label Count: Handling Semantic Imprecision by Integrating Domain Knowledge*. In International Conference on Pattern Recognition (ICPR).
 * **Self-Supervised CHILLAX** Brust, C. A., Barz, B., & Denzler, J. (2022). *Self-Supervised Learning from Semantically Imprecise Data*. In Computer Vision Theory and Applications (VISAPP)
 * **Semantic Label Sharing** Fergus, R., Bernal, H., Weiss, Y., & Torralba, A. (2010). *Semantic label sharing for learning with many categories*. In European Conference on Computer Vision (ECCV).

**Datasets**\
CHIA has integrated support including hierarchies for a number of popular datasets. See [here](docs/architecture.md#dataset) for a complete list.


## Installation and Getting Started
CHIA is available on PyPI. To install, simply run:
```bash
pip install chia
```
or clone this repository, and run:
```bash
pip install -e .
```

To run the [example experiment](examples/experiment.py) which makes sure that everything works, use the following command:
```bash
python examples/experiment.py examples/configuration.json
```
After a few minutes, the last lines of output should look like this:
```text
[SHUTDOWN] [Experiment] Successful: True
```

## Documentation
The following articles explain more about CHIA:
 * [Architecture](docs/architecture.md) explains the overall construction. It also includes reference descriptions of most classes.
 * [Configuration](docs/configuration.md) describes how experiments and CHIA itself are configured.
 * [Using your own dataset](docs/dataset.md) explains our JSON format for adding your own data.

## Citation
If you use CHIA for your research, kindly cite:
> Brust, C. A., & Denzler, J. (2019). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition. Springer, Cham.

You can refer to the following BibTeX:
```bibtex
@inproceedings{Brust2019IDK,
author = {Clemens-Alexander Brust and Joachim Denzler},
booktitle = {Asian Conference on Pattern Recognition (ACPR)},
title = {Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers},
year = {2019},
doi = {10.1007/978-3-030-41404-7_1}
}
```




%prep
%autosetup -n chia-2.5.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-chia -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 2.5.0-1
- Package Spec generated