summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-chronometry.spec254
-rw-r--r--sources1
3 files changed, 256 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..bca0f4b 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/chronometry-2020.11.12.tar.gz
diff --git a/python-chronometry.spec b/python-chronometry.spec
new file mode 100644
index 0000000..f91bb32
--- /dev/null
+++ b/python-chronometry.spec
@@ -0,0 +1,254 @@
+%global _empty_manifest_terminate_build 0
+Name: python-chronometry
+Version: 2020.11.12
+Release: 1
+Summary: Python library for tracking time and displaying progress bars
+License: MIT
+URL: https://github.com/idin/chronometry
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/93/15/c445e164db7dcb2068653974931964433af911b17ece66f6923941ad3b3e/chronometry-2020.11.12.tar.gz
+BuildArch: noarch
+
+Requires: python3-pandas
+Requires: python3-numpy
+Requires: python3-slytherin
+Requires: python3-colouration
+Requires: python3-sklearn
+Requires: python3-ravenclaw
+Requires: python3-func-timeout
+Requires: python3-matplotlib
+
+%description
+# *Chronometry*
+
+## `ProgressBar`
+
+## `Estimator`
+`Estimator` is an object that estimates the running time of a single argument function.
+You can use it to avoid running a script for too long.
+For example, if you want to cluster a large dataset and running it might take too long,
+and cost too much if you use cloud computing,
+you can create a function with one argument `x` which takes a sample with `x` rows
+and clusters it; then you can use `Estimator` to estimate how long it takes to run it
+on the full dataset by providing the actual number of rows to the `estimate()` method.
+
+`Estimator` uses a *Polynomial* *Linear Regression* model
+and gives more weight to larger numbers for the training.
+
+### Usage
+
+```python
+from chronometry import Estimator
+from time import sleep
+
+def multiply_with_no_delay(x, y):
+ return (x ** 2 + 0.1 * x ** 3 + 1) * 0.00001 + y * 0.001
+
+def multiply(x, y):
+ sleep_time = multiply_with_no_delay(x, y)
+ if sleep_time > 30:
+ raise
+ sleep(sleep_time)
+ if y == 6:
+ sleep(12)
+ elif 7 < y < 15:
+ raise Exception()
+ return sleep_time
+
+estimator = Estimator(function=multiply, polynomial_degree=3, timeout=5)
+# the `unit` argument chooses the unit of time to be used. By default unit='s'
+
+estimator.auto_explore()
+estimator.predict_time(x=10000, y=10000)
+```
+The above code runs for about *53* seconds and then estimates that
+`multiply(10000, 10000)` will take *1002371.7* seconds which is only slightly
+smaller than the correct number: *1001010* seconds.
+
+`max_time` is the maximum time allowed for the estimate function to run.
+
+If you are using `Estimator` in *Jupyter*,
+you can plot the measurements with the `plot()` method (no arguments needed) which
+returns a `matplotlib` `AxesSubplot` object and displays it at the same time.
+
+```python
+estimator.plot('x')
+
+estimator.plot('y')
+```
+
+
+
+%package -n python3-chronometry
+Summary: Python library for tracking time and displaying progress bars
+Provides: python-chronometry
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-chronometry
+# *Chronometry*
+
+## `ProgressBar`
+
+## `Estimator`
+`Estimator` is an object that estimates the running time of a single argument function.
+You can use it to avoid running a script for too long.
+For example, if you want to cluster a large dataset and running it might take too long,
+and cost too much if you use cloud computing,
+you can create a function with one argument `x` which takes a sample with `x` rows
+and clusters it; then you can use `Estimator` to estimate how long it takes to run it
+on the full dataset by providing the actual number of rows to the `estimate()` method.
+
+`Estimator` uses a *Polynomial* *Linear Regression* model
+and gives more weight to larger numbers for the training.
+
+### Usage
+
+```python
+from chronometry import Estimator
+from time import sleep
+
+def multiply_with_no_delay(x, y):
+ return (x ** 2 + 0.1 * x ** 3 + 1) * 0.00001 + y * 0.001
+
+def multiply(x, y):
+ sleep_time = multiply_with_no_delay(x, y)
+ if sleep_time > 30:
+ raise
+ sleep(sleep_time)
+ if y == 6:
+ sleep(12)
+ elif 7 < y < 15:
+ raise Exception()
+ return sleep_time
+
+estimator = Estimator(function=multiply, polynomial_degree=3, timeout=5)
+# the `unit` argument chooses the unit of time to be used. By default unit='s'
+
+estimator.auto_explore()
+estimator.predict_time(x=10000, y=10000)
+```
+The above code runs for about *53* seconds and then estimates that
+`multiply(10000, 10000)` will take *1002371.7* seconds which is only slightly
+smaller than the correct number: *1001010* seconds.
+
+`max_time` is the maximum time allowed for the estimate function to run.
+
+If you are using `Estimator` in *Jupyter*,
+you can plot the measurements with the `plot()` method (no arguments needed) which
+returns a `matplotlib` `AxesSubplot` object and displays it at the same time.
+
+```python
+estimator.plot('x')
+
+estimator.plot('y')
+```
+
+
+
+%package help
+Summary: Development documents and examples for chronometry
+Provides: python3-chronometry-doc
+%description help
+# *Chronometry*
+
+## `ProgressBar`
+
+## `Estimator`
+`Estimator` is an object that estimates the running time of a single argument function.
+You can use it to avoid running a script for too long.
+For example, if you want to cluster a large dataset and running it might take too long,
+and cost too much if you use cloud computing,
+you can create a function with one argument `x` which takes a sample with `x` rows
+and clusters it; then you can use `Estimator` to estimate how long it takes to run it
+on the full dataset by providing the actual number of rows to the `estimate()` method.
+
+`Estimator` uses a *Polynomial* *Linear Regression* model
+and gives more weight to larger numbers for the training.
+
+### Usage
+
+```python
+from chronometry import Estimator
+from time import sleep
+
+def multiply_with_no_delay(x, y):
+ return (x ** 2 + 0.1 * x ** 3 + 1) * 0.00001 + y * 0.001
+
+def multiply(x, y):
+ sleep_time = multiply_with_no_delay(x, y)
+ if sleep_time > 30:
+ raise
+ sleep(sleep_time)
+ if y == 6:
+ sleep(12)
+ elif 7 < y < 15:
+ raise Exception()
+ return sleep_time
+
+estimator = Estimator(function=multiply, polynomial_degree=3, timeout=5)
+# the `unit` argument chooses the unit of time to be used. By default unit='s'
+
+estimator.auto_explore()
+estimator.predict_time(x=10000, y=10000)
+```
+The above code runs for about *53* seconds and then estimates that
+`multiply(10000, 10000)` will take *1002371.7* seconds which is only slightly
+smaller than the correct number: *1001010* seconds.
+
+`max_time` is the maximum time allowed for the estimate function to run.
+
+If you are using `Estimator` in *Jupyter*,
+you can plot the measurements with the `plot()` method (no arguments needed) which
+returns a `matplotlib` `AxesSubplot` object and displays it at the same time.
+
+```python
+estimator.plot('x')
+
+estimator.plot('y')
+```
+
+
+
+%prep
+%autosetup -n chronometry-2020.11.12
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-chronometry -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2020.11.12-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..b95fd90
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+19013d88934962e03d06f58ed8698d45 chronometry-2020.11.12.tar.gz