summaryrefslogtreecommitdiff
path: root/python-classy-core.spec
blob: 8036b81f6df42c239f244aff7253d5a780004251 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
%global _empty_manifest_terminate_build 0
Name:		python-classy-core
Version:	0.3.2
Release:	1
Summary:	A powerful tool to train and use your classification models.
License:	Apache
URL:		https://github.com/sunglasses-ai/classy
Source0:	https://mirrors.aliyun.com/pypi/web/packages/75/77/91c3da44ec76507b72abba7261164d69ddb2b5558c37e632e4c27400f51f/classy-core-0.3.2.tar.gz
BuildArch:	noarch

Requires:	python3-torch
Requires:	python3-pytorch-lightning
Requires:	python3-torchmetrics
Requires:	python3-transformers
Requires:	python3-hydra-core
Requires:	python3-argcomplete
Requires:	python3-wandb
Requires:	python3-datasets
Requires:	python3-nltk
Requires:	python3-seqeval
Requires:	python3-rouge-score
Requires:	python3-sacrebleu
Requires:	python3-rich
Requires:	python3-sentencepiece
Requires:	python3-plotly
Requires:	python3-pdoc3
Requires:	python3-st-annotated-text
Requires:	python3-streamlit
Requires:	python3-fastapi
Requires:	python3-uvicorn[standard]
Requires:	python3-streamlit
Requires:	python3-st-annotated-text
Requires:	python3-plotly
Requires:	python3-streamlit
Requires:	python3-st-annotated-text
Requires:	python3-pdoc3
Requires:	python3-fastapi
Requires:	python3-pdoc3
Requires:	python3-plotly
Requires:	python3-fastapi
Requires:	python3-uvicorn[standard]
Requires:	python3-st-annotated-text
Requires:	python3-streamlit
Requires:	python3-uvicorn[standard]

%description
<div align="center">
    <br>
    <img alt="classy logo" src="https://github.com/sunglasses-ai/classy/raw/main/img/logo.png" width="400"/>
    <p>
    A PyTorch-based library for fast prototyping and sharing of deep neural network models.
    </p>
    <hr/>
</div>
<p align="center">
<!-- // REMOVE
    <a href="https://github.com/sunglasses-ai/classy/actions">
        <img alt="CI" src="https://github.com/sunglasses-ai/classy/workflows/CI/badge.svg?event=push&branch=main">
    </a>
    <a href="https://github.com/sunglasses-ai/classy/blob/main/LICENSE">
        <img alt="License" src="https://img.shields.io/github/license/sunglasses-ai/classy.svg?color=blue&cachedrop">
    </a>
    <a href="https://optuna.org">
        <img alt="Optuna" src="https://img.shields.io/badge/Optuna-integrated-blue">
    </a>
-->
    <a href="">
        <img alt="Python" src="https://img.shields.io/badge/Python 3.8+-blue?style=for-the-badge&logo=python&logoColor=white">
    </a>
    <a href="https://pypi.org/project/classy-core/">
        <img alt="PyPI" src="https://img.shields.io/pypi/v/classy-core?style=for-the-badge&logo=pypi">
    </a>
    <a href="https://pytorch.org/get-started/locally/">
        <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch 1.8+-ee4c2c?style=for-the-badge&logo=pytorch&logoColor=white">
    </a>
    <a href="https://pytorchlightning.ai/">
        <img alt="Lightning" src="https://img.shields.io/badge/Lightning 1.5-792ee5?style=for-the-badge&logo=pytorchlightning&logoColor=white">
    </a>
    <a href="https://hydra.cc/">
        <img alt="Config: hydra" src="https://img.shields.io/badge/config-hydra 1.1.1-89b8cd?style=for-the-badge&labelColor=gray">
    </a>
    <a href="https://black.readthedocs.io/en/stable/">
        <img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-black.svg?style=for-the-badge&labelColor=gray">
    </a>
    <a href="https://codecov.io/gh/sunglasses-ai/classy">
        <img alt="Codecov" src="https://img.shields.io/codecov/c/github/sunglasses-ai/classy/main?label=cov&logo=codecov&style=for-the-badge&token=S0PMBCTG73">
    </a>
    <br/>
</p>

## Quick Links

<!-- - [💻 Demo (TODO?)](https://TODO/)
- [🔦 Guide (TODO)](https://TODO/)
- [📓 Versioned Documentation](http://sunglasses-ai.github.io/classy/docs/intro) ( [latest](http://sunglasses-ai.github.io/classy/docs/intro) | [stable](http://sunglasses-ai.github.io/classy/docs/intro) | [commit](http://sunglasses-ai.github.io/classy/docs/intro) )
- [⚙️ Continuous Build (TODO)](https://TODO)-->
- [↗️ Website](http://sunglasses-ai.github.io/classy/)
- [📓 Documentation](http://sunglasses-ai.github.io/classy/docs/intro)
- [💻 Template](https://github.com/sunglasses-ai/classy-template)
- [🔦 Examples](https://github.com/sunglasses-ai/classy-examples)
- [✋ Contributing Guidelines](CONTRIBUTING.md)
- [🌙 Nightly Releases](https://pypi.org/project/classy-core/#history)


## In this README

- [🚀 Getting Started](#getting-started-using-classy)
- [⚡ Installation](#installation)
- [⌨ Running Classy](#running-classy)
    - [`classy train`](#classy-train)
    - [`classy predict`](#classy-predict)
    - [`classy evaluate`](#classy-evaluate)
    - [`classy serve`](#classy-serve)
    - [`classy demo`](#classy-demo)
    - [`classy describe`](#classy-describe)
    - [`classy upload`](#classy-upload)
    - [`classy download`](#classy-download)
    - [Enable `classy` shell completion](#enabling-shell-completion)
- [🤔 Issues](#issues)
- [❤️ Contributions](#contributions)


## Getting Started using classy
If this is your first time meeting `classy`, don't worry! We have plenty of resources to help you learn how it works and what it can do for you.

For starters, have a look at our [amazing website](http://sunglasses-ai.github.io/classy) and [our documentation](http://sunglasses-ai.github.io/classy/docs/intro)!

If you want to get your hands dirty right away, have a look at our [base classy template](https://github.com/sunglasses-ai/classy-template).
Also, we have [a few examples](https://github.com/sunglasses-ai/classy-examples) that you can look at to get to know `classy`!

## Installation

*For a more in-depth installation guide (covering also installing from source and through docker), please visit our [installation page](https://sunglasses-ai.github.io/classy/docs/installation/).*

If you are using one of our [templates](https://github.com/sunglasses-ai/classy-template), there is a handy `setup.sh` script you can use that will execute the commands to create the environment and install `classy` for you.

### Installing via pip

#### Setting up a virtual environment

We strongly recommend using [Conda](https://conda.io/) as the environment manager when dealing with deep learning / data science / machine learning. It's also recommended that you install the PyTorch ecosystem **before** installing `classy` by following the instructions on [pytorch.org](https://pytorch.org/)

If you already have a Python 3 environment you want to use, you can skip to the [Installing the library and dependencies](#Installing-the-library-and-dependencies) section.

1.  [Download and install Conda](https://conda.io/projects/conda/en/latest/user-guide/install/index.html).

2.  Create a Conda environment with Python 3.8+:

    ```yaml
    conda create -n classy python=3.8
    ```

3.  Activate the Conda environment:

    ```yaml
    conda activate classy
    ```

#### Installing the library and dependencies

Simply execute

```yaml
pip install classy-core
```

and voilà! You're all set.

*Looking for some adventures? Install nightly releases directly from [pypi](https://pypi.org/project/classy-core/#history)! You will ~~not~~ regret it :)*


## Running `classy`
Once it is installed, `classy` is available as a command line tool. It offers a wide variety of subcommands, all listed below. Detailed guides and references for each command is available [in the documentation](https://sunglasses-ai.github.io/classy/docs/reference-manual/cli/train/).
Every one of `classy`'s subcommands have a `-h|--help` flag available which details the various arguments & options you can use (e.g., `classy train -h`).

### `classy train`
In its simplest form, `classy train` lets you train a transformer-based neural network for one of the tasks supported by `classy` (see [the documentation](https://sunglasses-ai.github.io/classy/docs/reference-manual/tasks-and-formats/)).

```yaml
classy train sentence-pair path/to/dataset/folder-or-file -n my-model
```
The command above will train a model to predict a label given a pair of sentences as input (e.g., Natural Language Inference or NLI) and save it under `experiments/my-model`. This same model can be further used by all other `classy` commands which require a `classy` model (`predict`, `evaluate`, `serve`, `demo`, `upload`).

### `classy predict`
`classy predict` actually has two subcommands: `interactive` and `file`.

The first loads the model in memory and lets you try it out through the shell directly, so that you can test the model you trained and see what it predicts given some input. It is particularly useful when your machine cannot open a port for [`classy demo`](#classy-demo).

The second, instead, works on a file and produces an output where, for each input, it associates the corresponding predicted label. It is very useful when doing pre-processing or when you need to evaluate your model (although we offer [`classy evaluate`](#classy-evaluate) for that).

### `classy evaluate`
`classy evaluate` lets you evaluate your model on standard metrics for the task your model was trained upon. Simply run `classy evaluate my-model path/to/file -o path/to/output/file` and it will dump the evaluation at `path/to/output/file`

### `classy serve`
`classy serve <model>` loads the model in memory and spawns a REST API you can use to query your model with any REST client.

### `classy demo`
`classy demo <model>` spawns a [Streamlit](https://streamlit.io) interface which lets you quickly show and query your model.

### `classy describe`
`classy describe <task> --dataset path/to/dataset` runs some common metrics on a file formatted for the specific task. Great tool to run **before** training your model!

### `classy upload`
`classy upload <model>` lets you upload your `classy`-trained model on the [HuggingFace Hub](https://huggingface.co) and lets other users download / use it. (NOTE: you need a HuggingFace Hub account in order to upload to their hub)

Models uploaded via `classy upload` will be available for download by other classy users by simply executing `classy download username@model`.

### `classy download`
`classy download <model>` downloads a previously uploaded `classy`-trained model from the [HuggingFace Hub](https://huggingface.co) and stores it on your machine so that it is usable with any other `classy` command which requires a trained model (`predict`, `evaluate`, `serve`, `demo`, `upload`).

Models uploaded via `classy upload` are available by doing `classy download username@model`.

### Enabling Shell Completion
To install shell completion, **activate your conda environment** and then execute
```yaml
classy --install-autocomplete
```

From now on, whenever you activate your conda environment with `classy` installed, you are going to have autocompletion when pressing `[TAB]`!

## Issues
You are more than welcome to file issues with either feature requests, bug reports, or general questions. If you already found a solution to your problem, don't hesitate to share it. Suggestions for new best practices and tricks are always welcome!

## Contributions
We warmly welcome contributions from the community. If it is your first time as a contributor, we recommend you start by reading our CONTRIBUTING.md guide.

Small contributions can be made directly in a pull request. For contributing major features, we recommend you first create a issue proposing a design, so that it can be discussed before you risk wasting time.

Pull requests (PRs) must have one approving review and no requested changes before they are merged.
As `classy` is primarily driven by SunglassesAI, we reserve the right to reject or revert contributions that we don't think are good additions or might not fit into our roadmap.




%package -n python3-classy-core
Summary:	A powerful tool to train and use your classification models.
Provides:	python-classy-core
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-classy-core
<div align="center">
    <br>
    <img alt="classy logo" src="https://github.com/sunglasses-ai/classy/raw/main/img/logo.png" width="400"/>
    <p>
    A PyTorch-based library for fast prototyping and sharing of deep neural network models.
    </p>
    <hr/>
</div>
<p align="center">
<!-- // REMOVE
    <a href="https://github.com/sunglasses-ai/classy/actions">
        <img alt="CI" src="https://github.com/sunglasses-ai/classy/workflows/CI/badge.svg?event=push&branch=main">
    </a>
    <a href="https://github.com/sunglasses-ai/classy/blob/main/LICENSE">
        <img alt="License" src="https://img.shields.io/github/license/sunglasses-ai/classy.svg?color=blue&cachedrop">
    </a>
    <a href="https://optuna.org">
        <img alt="Optuna" src="https://img.shields.io/badge/Optuna-integrated-blue">
    </a>
-->
    <a href="">
        <img alt="Python" src="https://img.shields.io/badge/Python 3.8+-blue?style=for-the-badge&logo=python&logoColor=white">
    </a>
    <a href="https://pypi.org/project/classy-core/">
        <img alt="PyPI" src="https://img.shields.io/pypi/v/classy-core?style=for-the-badge&logo=pypi">
    </a>
    <a href="https://pytorch.org/get-started/locally/">
        <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch 1.8+-ee4c2c?style=for-the-badge&logo=pytorch&logoColor=white">
    </a>
    <a href="https://pytorchlightning.ai/">
        <img alt="Lightning" src="https://img.shields.io/badge/Lightning 1.5-792ee5?style=for-the-badge&logo=pytorchlightning&logoColor=white">
    </a>
    <a href="https://hydra.cc/">
        <img alt="Config: hydra" src="https://img.shields.io/badge/config-hydra 1.1.1-89b8cd?style=for-the-badge&labelColor=gray">
    </a>
    <a href="https://black.readthedocs.io/en/stable/">
        <img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-black.svg?style=for-the-badge&labelColor=gray">
    </a>
    <a href="https://codecov.io/gh/sunglasses-ai/classy">
        <img alt="Codecov" src="https://img.shields.io/codecov/c/github/sunglasses-ai/classy/main?label=cov&logo=codecov&style=for-the-badge&token=S0PMBCTG73">
    </a>
    <br/>
</p>

## Quick Links

<!-- - [💻 Demo (TODO?)](https://TODO/)
- [🔦 Guide (TODO)](https://TODO/)
- [📓 Versioned Documentation](http://sunglasses-ai.github.io/classy/docs/intro) ( [latest](http://sunglasses-ai.github.io/classy/docs/intro) | [stable](http://sunglasses-ai.github.io/classy/docs/intro) | [commit](http://sunglasses-ai.github.io/classy/docs/intro) )
- [⚙️ Continuous Build (TODO)](https://TODO)-->
- [↗️ Website](http://sunglasses-ai.github.io/classy/)
- [📓 Documentation](http://sunglasses-ai.github.io/classy/docs/intro)
- [💻 Template](https://github.com/sunglasses-ai/classy-template)
- [🔦 Examples](https://github.com/sunglasses-ai/classy-examples)
- [✋ Contributing Guidelines](CONTRIBUTING.md)
- [🌙 Nightly Releases](https://pypi.org/project/classy-core/#history)


## In this README

- [🚀 Getting Started](#getting-started-using-classy)
- [⚡ Installation](#installation)
- [⌨ Running Classy](#running-classy)
    - [`classy train`](#classy-train)
    - [`classy predict`](#classy-predict)
    - [`classy evaluate`](#classy-evaluate)
    - [`classy serve`](#classy-serve)
    - [`classy demo`](#classy-demo)
    - [`classy describe`](#classy-describe)
    - [`classy upload`](#classy-upload)
    - [`classy download`](#classy-download)
    - [Enable `classy` shell completion](#enabling-shell-completion)
- [🤔 Issues](#issues)
- [❤️ Contributions](#contributions)


## Getting Started using classy
If this is your first time meeting `classy`, don't worry! We have plenty of resources to help you learn how it works and what it can do for you.

For starters, have a look at our [amazing website](http://sunglasses-ai.github.io/classy) and [our documentation](http://sunglasses-ai.github.io/classy/docs/intro)!

If you want to get your hands dirty right away, have a look at our [base classy template](https://github.com/sunglasses-ai/classy-template).
Also, we have [a few examples](https://github.com/sunglasses-ai/classy-examples) that you can look at to get to know `classy`!

## Installation

*For a more in-depth installation guide (covering also installing from source and through docker), please visit our [installation page](https://sunglasses-ai.github.io/classy/docs/installation/).*

If you are using one of our [templates](https://github.com/sunglasses-ai/classy-template), there is a handy `setup.sh` script you can use that will execute the commands to create the environment and install `classy` for you.

### Installing via pip

#### Setting up a virtual environment

We strongly recommend using [Conda](https://conda.io/) as the environment manager when dealing with deep learning / data science / machine learning. It's also recommended that you install the PyTorch ecosystem **before** installing `classy` by following the instructions on [pytorch.org](https://pytorch.org/)

If you already have a Python 3 environment you want to use, you can skip to the [Installing the library and dependencies](#Installing-the-library-and-dependencies) section.

1.  [Download and install Conda](https://conda.io/projects/conda/en/latest/user-guide/install/index.html).

2.  Create a Conda environment with Python 3.8+:

    ```yaml
    conda create -n classy python=3.8
    ```

3.  Activate the Conda environment:

    ```yaml
    conda activate classy
    ```

#### Installing the library and dependencies

Simply execute

```yaml
pip install classy-core
```

and voilà! You're all set.

*Looking for some adventures? Install nightly releases directly from [pypi](https://pypi.org/project/classy-core/#history)! You will ~~not~~ regret it :)*


## Running `classy`
Once it is installed, `classy` is available as a command line tool. It offers a wide variety of subcommands, all listed below. Detailed guides and references for each command is available [in the documentation](https://sunglasses-ai.github.io/classy/docs/reference-manual/cli/train/).
Every one of `classy`'s subcommands have a `-h|--help` flag available which details the various arguments & options you can use (e.g., `classy train -h`).

### `classy train`
In its simplest form, `classy train` lets you train a transformer-based neural network for one of the tasks supported by `classy` (see [the documentation](https://sunglasses-ai.github.io/classy/docs/reference-manual/tasks-and-formats/)).

```yaml
classy train sentence-pair path/to/dataset/folder-or-file -n my-model
```
The command above will train a model to predict a label given a pair of sentences as input (e.g., Natural Language Inference or NLI) and save it under `experiments/my-model`. This same model can be further used by all other `classy` commands which require a `classy` model (`predict`, `evaluate`, `serve`, `demo`, `upload`).

### `classy predict`
`classy predict` actually has two subcommands: `interactive` and `file`.

The first loads the model in memory and lets you try it out through the shell directly, so that you can test the model you trained and see what it predicts given some input. It is particularly useful when your machine cannot open a port for [`classy demo`](#classy-demo).

The second, instead, works on a file and produces an output where, for each input, it associates the corresponding predicted label. It is very useful when doing pre-processing or when you need to evaluate your model (although we offer [`classy evaluate`](#classy-evaluate) for that).

### `classy evaluate`
`classy evaluate` lets you evaluate your model on standard metrics for the task your model was trained upon. Simply run `classy evaluate my-model path/to/file -o path/to/output/file` and it will dump the evaluation at `path/to/output/file`

### `classy serve`
`classy serve <model>` loads the model in memory and spawns a REST API you can use to query your model with any REST client.

### `classy demo`
`classy demo <model>` spawns a [Streamlit](https://streamlit.io) interface which lets you quickly show and query your model.

### `classy describe`
`classy describe <task> --dataset path/to/dataset` runs some common metrics on a file formatted for the specific task. Great tool to run **before** training your model!

### `classy upload`
`classy upload <model>` lets you upload your `classy`-trained model on the [HuggingFace Hub](https://huggingface.co) and lets other users download / use it. (NOTE: you need a HuggingFace Hub account in order to upload to their hub)

Models uploaded via `classy upload` will be available for download by other classy users by simply executing `classy download username@model`.

### `classy download`
`classy download <model>` downloads a previously uploaded `classy`-trained model from the [HuggingFace Hub](https://huggingface.co) and stores it on your machine so that it is usable with any other `classy` command which requires a trained model (`predict`, `evaluate`, `serve`, `demo`, `upload`).

Models uploaded via `classy upload` are available by doing `classy download username@model`.

### Enabling Shell Completion
To install shell completion, **activate your conda environment** and then execute
```yaml
classy --install-autocomplete
```

From now on, whenever you activate your conda environment with `classy` installed, you are going to have autocompletion when pressing `[TAB]`!

## Issues
You are more than welcome to file issues with either feature requests, bug reports, or general questions. If you already found a solution to your problem, don't hesitate to share it. Suggestions for new best practices and tricks are always welcome!

## Contributions
We warmly welcome contributions from the community. If it is your first time as a contributor, we recommend you start by reading our CONTRIBUTING.md guide.

Small contributions can be made directly in a pull request. For contributing major features, we recommend you first create a issue proposing a design, so that it can be discussed before you risk wasting time.

Pull requests (PRs) must have one approving review and no requested changes before they are merged.
As `classy` is primarily driven by SunglassesAI, we reserve the right to reject or revert contributions that we don't think are good additions or might not fit into our roadmap.




%package help
Summary:	Development documents and examples for classy-core
Provides:	python3-classy-core-doc
%description help
<div align="center">
    <br>
    <img alt="classy logo" src="https://github.com/sunglasses-ai/classy/raw/main/img/logo.png" width="400"/>
    <p>
    A PyTorch-based library for fast prototyping and sharing of deep neural network models.
    </p>
    <hr/>
</div>
<p align="center">
<!-- // REMOVE
    <a href="https://github.com/sunglasses-ai/classy/actions">
        <img alt="CI" src="https://github.com/sunglasses-ai/classy/workflows/CI/badge.svg?event=push&branch=main">
    </a>
    <a href="https://github.com/sunglasses-ai/classy/blob/main/LICENSE">
        <img alt="License" src="https://img.shields.io/github/license/sunglasses-ai/classy.svg?color=blue&cachedrop">
    </a>
    <a href="https://optuna.org">
        <img alt="Optuna" src="https://img.shields.io/badge/Optuna-integrated-blue">
    </a>
-->
    <a href="">
        <img alt="Python" src="https://img.shields.io/badge/Python 3.8+-blue?style=for-the-badge&logo=python&logoColor=white">
    </a>
    <a href="https://pypi.org/project/classy-core/">
        <img alt="PyPI" src="https://img.shields.io/pypi/v/classy-core?style=for-the-badge&logo=pypi">
    </a>
    <a href="https://pytorch.org/get-started/locally/">
        <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch 1.8+-ee4c2c?style=for-the-badge&logo=pytorch&logoColor=white">
    </a>
    <a href="https://pytorchlightning.ai/">
        <img alt="Lightning" src="https://img.shields.io/badge/Lightning 1.5-792ee5?style=for-the-badge&logo=pytorchlightning&logoColor=white">
    </a>
    <a href="https://hydra.cc/">
        <img alt="Config: hydra" src="https://img.shields.io/badge/config-hydra 1.1.1-89b8cd?style=for-the-badge&labelColor=gray">
    </a>
    <a href="https://black.readthedocs.io/en/stable/">
        <img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-black.svg?style=for-the-badge&labelColor=gray">
    </a>
    <a href="https://codecov.io/gh/sunglasses-ai/classy">
        <img alt="Codecov" src="https://img.shields.io/codecov/c/github/sunglasses-ai/classy/main?label=cov&logo=codecov&style=for-the-badge&token=S0PMBCTG73">
    </a>
    <br/>
</p>

## Quick Links

<!-- - [💻 Demo (TODO?)](https://TODO/)
- [🔦 Guide (TODO)](https://TODO/)
- [📓 Versioned Documentation](http://sunglasses-ai.github.io/classy/docs/intro) ( [latest](http://sunglasses-ai.github.io/classy/docs/intro) | [stable](http://sunglasses-ai.github.io/classy/docs/intro) | [commit](http://sunglasses-ai.github.io/classy/docs/intro) )
- [⚙️ Continuous Build (TODO)](https://TODO)-->
- [↗️ Website](http://sunglasses-ai.github.io/classy/)
- [📓 Documentation](http://sunglasses-ai.github.io/classy/docs/intro)
- [💻 Template](https://github.com/sunglasses-ai/classy-template)
- [🔦 Examples](https://github.com/sunglasses-ai/classy-examples)
- [✋ Contributing Guidelines](CONTRIBUTING.md)
- [🌙 Nightly Releases](https://pypi.org/project/classy-core/#history)


## In this README

- [🚀 Getting Started](#getting-started-using-classy)
- [⚡ Installation](#installation)
- [⌨ Running Classy](#running-classy)
    - [`classy train`](#classy-train)
    - [`classy predict`](#classy-predict)
    - [`classy evaluate`](#classy-evaluate)
    - [`classy serve`](#classy-serve)
    - [`classy demo`](#classy-demo)
    - [`classy describe`](#classy-describe)
    - [`classy upload`](#classy-upload)
    - [`classy download`](#classy-download)
    - [Enable `classy` shell completion](#enabling-shell-completion)
- [🤔 Issues](#issues)
- [❤️ Contributions](#contributions)


## Getting Started using classy
If this is your first time meeting `classy`, don't worry! We have plenty of resources to help you learn how it works and what it can do for you.

For starters, have a look at our [amazing website](http://sunglasses-ai.github.io/classy) and [our documentation](http://sunglasses-ai.github.io/classy/docs/intro)!

If you want to get your hands dirty right away, have a look at our [base classy template](https://github.com/sunglasses-ai/classy-template).
Also, we have [a few examples](https://github.com/sunglasses-ai/classy-examples) that you can look at to get to know `classy`!

## Installation

*For a more in-depth installation guide (covering also installing from source and through docker), please visit our [installation page](https://sunglasses-ai.github.io/classy/docs/installation/).*

If you are using one of our [templates](https://github.com/sunglasses-ai/classy-template), there is a handy `setup.sh` script you can use that will execute the commands to create the environment and install `classy` for you.

### Installing via pip

#### Setting up a virtual environment

We strongly recommend using [Conda](https://conda.io/) as the environment manager when dealing with deep learning / data science / machine learning. It's also recommended that you install the PyTorch ecosystem **before** installing `classy` by following the instructions on [pytorch.org](https://pytorch.org/)

If you already have a Python 3 environment you want to use, you can skip to the [Installing the library and dependencies](#Installing-the-library-and-dependencies) section.

1.  [Download and install Conda](https://conda.io/projects/conda/en/latest/user-guide/install/index.html).

2.  Create a Conda environment with Python 3.8+:

    ```yaml
    conda create -n classy python=3.8
    ```

3.  Activate the Conda environment:

    ```yaml
    conda activate classy
    ```

#### Installing the library and dependencies

Simply execute

```yaml
pip install classy-core
```

and voilà! You're all set.

*Looking for some adventures? Install nightly releases directly from [pypi](https://pypi.org/project/classy-core/#history)! You will ~~not~~ regret it :)*


## Running `classy`
Once it is installed, `classy` is available as a command line tool. It offers a wide variety of subcommands, all listed below. Detailed guides and references for each command is available [in the documentation](https://sunglasses-ai.github.io/classy/docs/reference-manual/cli/train/).
Every one of `classy`'s subcommands have a `-h|--help` flag available which details the various arguments & options you can use (e.g., `classy train -h`).

### `classy train`
In its simplest form, `classy train` lets you train a transformer-based neural network for one of the tasks supported by `classy` (see [the documentation](https://sunglasses-ai.github.io/classy/docs/reference-manual/tasks-and-formats/)).

```yaml
classy train sentence-pair path/to/dataset/folder-or-file -n my-model
```
The command above will train a model to predict a label given a pair of sentences as input (e.g., Natural Language Inference or NLI) and save it under `experiments/my-model`. This same model can be further used by all other `classy` commands which require a `classy` model (`predict`, `evaluate`, `serve`, `demo`, `upload`).

### `classy predict`
`classy predict` actually has two subcommands: `interactive` and `file`.

The first loads the model in memory and lets you try it out through the shell directly, so that you can test the model you trained and see what it predicts given some input. It is particularly useful when your machine cannot open a port for [`classy demo`](#classy-demo).

The second, instead, works on a file and produces an output where, for each input, it associates the corresponding predicted label. It is very useful when doing pre-processing or when you need to evaluate your model (although we offer [`classy evaluate`](#classy-evaluate) for that).

### `classy evaluate`
`classy evaluate` lets you evaluate your model on standard metrics for the task your model was trained upon. Simply run `classy evaluate my-model path/to/file -o path/to/output/file` and it will dump the evaluation at `path/to/output/file`

### `classy serve`
`classy serve <model>` loads the model in memory and spawns a REST API you can use to query your model with any REST client.

### `classy demo`
`classy demo <model>` spawns a [Streamlit](https://streamlit.io) interface which lets you quickly show and query your model.

### `classy describe`
`classy describe <task> --dataset path/to/dataset` runs some common metrics on a file formatted for the specific task. Great tool to run **before** training your model!

### `classy upload`
`classy upload <model>` lets you upload your `classy`-trained model on the [HuggingFace Hub](https://huggingface.co) and lets other users download / use it. (NOTE: you need a HuggingFace Hub account in order to upload to their hub)

Models uploaded via `classy upload` will be available for download by other classy users by simply executing `classy download username@model`.

### `classy download`
`classy download <model>` downloads a previously uploaded `classy`-trained model from the [HuggingFace Hub](https://huggingface.co) and stores it on your machine so that it is usable with any other `classy` command which requires a trained model (`predict`, `evaluate`, `serve`, `demo`, `upload`).

Models uploaded via `classy upload` are available by doing `classy download username@model`.

### Enabling Shell Completion
To install shell completion, **activate your conda environment** and then execute
```yaml
classy --install-autocomplete
```

From now on, whenever you activate your conda environment with `classy` installed, you are going to have autocompletion when pressing `[TAB]`!

## Issues
You are more than welcome to file issues with either feature requests, bug reports, or general questions. If you already found a solution to your problem, don't hesitate to share it. Suggestions for new best practices and tricks are always welcome!

## Contributions
We warmly welcome contributions from the community. If it is your first time as a contributor, we recommend you start by reading our CONTRIBUTING.md guide.

Small contributions can be made directly in a pull request. For contributing major features, we recommend you first create a issue proposing a design, so that it can be discussed before you risk wasting time.

Pull requests (PRs) must have one approving review and no requested changes before they are merged.
As `classy` is primarily driven by SunglassesAI, we reserve the right to reject or revert contributions that we don't think are good additions or might not fit into our roadmap.




%prep
%autosetup -n classy-core-0.3.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-classy-core -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.2-1
- Package Spec generated