summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <copr-devel@lists.fedorahosted.org>2023-03-09 02:07:49 +0000
committerCoprDistGit <copr-devel@lists.fedorahosted.org>2023-03-09 02:07:49 +0000
commit1c10271d3ae9753469f66e104592345975732ddc (patch)
tree4138525bd929538b1880337c274e73e021b0a128
parent2c203fedb4b3d4b38d74c6471cbe3411f76f76a6 (diff)
automatic import of python-cma
-rw-r--r--.gitignore1
-rw-r--r--python-cma.spec120
-rw-r--r--sources1
3 files changed, 122 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..6244d3e 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/cma-3.3.0.tar.gz
diff --git a/python-cma.spec b/python-cma.spec
new file mode 100644
index 0000000..dbba954
--- /dev/null
+++ b/python-cma.spec
@@ -0,0 +1,120 @@
+%global _empty_manifest_terminate_build 0
+Name: python-cma
+Version: 3.3.0
+Release: 1
+Summary: CMA-ES, Covariance Matrix Adaptation Evolution Strategy for non-linear numerical optimization in Python
+License: BSD
+URL: https://github.com/CMA-ES/pycma
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/46/b8/dc832cf0881641355c5121b390942de858079de08720bc2a6030c6c85153/cma-3.3.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-moarchiving
+Requires: python3-matplotlib
+
+%description
+A stochastic numerical optimization algorithm for difficult (non-convex,
+ill-conditioned, multi-modal, rugged, noisy) optimization problems in
+continuous search spaces, implemented in Python.
+Typical domain of application are bound-constrained or unconstrained
+objective functions with:
+* search space dimension between, say, 5 and (a few) 100,
+* no gradients available,
+* at least, say, 100 times dimension function evaluations needed to
+ get satisfactory solutions,
+* non-separable, ill-conditioned, or rugged/multi-modal landscapes.
+The CMA-ES is quite reliable, however for small budgets (fewer function
+evaluations than, say, 100 times dimension) or in very small dimensions
+better (i.e. faster) methods are available.
+The ``pycma`` module provides two independent implementations of the
+CMA-ES algorithm in the classes ``cma.CMAEvolutionStrategy`` and
+``cma.purecma.CMAES``.
+
+%package -n python3-cma
+Summary: CMA-ES, Covariance Matrix Adaptation Evolution Strategy for non-linear numerical optimization in Python
+Provides: python-cma
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-cma
+A stochastic numerical optimization algorithm for difficult (non-convex,
+ill-conditioned, multi-modal, rugged, noisy) optimization problems in
+continuous search spaces, implemented in Python.
+Typical domain of application are bound-constrained or unconstrained
+objective functions with:
+* search space dimension between, say, 5 and (a few) 100,
+* no gradients available,
+* at least, say, 100 times dimension function evaluations needed to
+ get satisfactory solutions,
+* non-separable, ill-conditioned, or rugged/multi-modal landscapes.
+The CMA-ES is quite reliable, however for small budgets (fewer function
+evaluations than, say, 100 times dimension) or in very small dimensions
+better (i.e. faster) methods are available.
+The ``pycma`` module provides two independent implementations of the
+CMA-ES algorithm in the classes ``cma.CMAEvolutionStrategy`` and
+``cma.purecma.CMAES``.
+
+%package help
+Summary: Development documents and examples for cma
+Provides: python3-cma-doc
+%description help
+A stochastic numerical optimization algorithm for difficult (non-convex,
+ill-conditioned, multi-modal, rugged, noisy) optimization problems in
+continuous search spaces, implemented in Python.
+Typical domain of application are bound-constrained or unconstrained
+objective functions with:
+* search space dimension between, say, 5 and (a few) 100,
+* no gradients available,
+* at least, say, 100 times dimension function evaluations needed to
+ get satisfactory solutions,
+* non-separable, ill-conditioned, or rugged/multi-modal landscapes.
+The CMA-ES is quite reliable, however for small budgets (fewer function
+evaluations than, say, 100 times dimension) or in very small dimensions
+better (i.e. faster) methods are available.
+The ``pycma`` module provides two independent implementations of the
+CMA-ES algorithm in the classes ``cma.CMAEvolutionStrategy`` and
+``cma.purecma.CMAES``.
+
+%prep
+%autosetup -n cma-3.3.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-cma -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Thu Mar 09 2023 Python_Bot <Python_Bot@openeuler.org> - 3.3.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..18e46b9
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+d9ddd1c7485f2c833c3aa2c5781c6e76 cma-3.3.0.tar.gz