diff options
author | CoprDistGit <copr-devel@lists.fedorahosted.org> | 2023-03-09 02:07:49 +0000 |
---|---|---|
committer | CoprDistGit <copr-devel@lists.fedorahosted.org> | 2023-03-09 02:07:49 +0000 |
commit | 1c10271d3ae9753469f66e104592345975732ddc (patch) | |
tree | 4138525bd929538b1880337c274e73e021b0a128 | |
parent | 2c203fedb4b3d4b38d74c6471cbe3411f76f76a6 (diff) |
automatic import of python-cma
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-cma.spec | 120 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 122 insertions, 0 deletions
@@ -0,0 +1 @@ +/cma-3.3.0.tar.gz diff --git a/python-cma.spec b/python-cma.spec new file mode 100644 index 0000000..dbba954 --- /dev/null +++ b/python-cma.spec @@ -0,0 +1,120 @@ +%global _empty_manifest_terminate_build 0 +Name: python-cma +Version: 3.3.0 +Release: 1 +Summary: CMA-ES, Covariance Matrix Adaptation Evolution Strategy for non-linear numerical optimization in Python +License: BSD +URL: https://github.com/CMA-ES/pycma +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/46/b8/dc832cf0881641355c5121b390942de858079de08720bc2a6030c6c85153/cma-3.3.0.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-moarchiving +Requires: python3-matplotlib + +%description +A stochastic numerical optimization algorithm for difficult (non-convex, +ill-conditioned, multi-modal, rugged, noisy) optimization problems in +continuous search spaces, implemented in Python. +Typical domain of application are bound-constrained or unconstrained +objective functions with: +* search space dimension between, say, 5 and (a few) 100, +* no gradients available, +* at least, say, 100 times dimension function evaluations needed to + get satisfactory solutions, +* non-separable, ill-conditioned, or rugged/multi-modal landscapes. +The CMA-ES is quite reliable, however for small budgets (fewer function +evaluations than, say, 100 times dimension) or in very small dimensions +better (i.e. faster) methods are available. +The ``pycma`` module provides two independent implementations of the +CMA-ES algorithm in the classes ``cma.CMAEvolutionStrategy`` and +``cma.purecma.CMAES``. + +%package -n python3-cma +Summary: CMA-ES, Covariance Matrix Adaptation Evolution Strategy for non-linear numerical optimization in Python +Provides: python-cma +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-cma +A stochastic numerical optimization algorithm for difficult (non-convex, +ill-conditioned, multi-modal, rugged, noisy) optimization problems in +continuous search spaces, implemented in Python. +Typical domain of application are bound-constrained or unconstrained +objective functions with: +* search space dimension between, say, 5 and (a few) 100, +* no gradients available, +* at least, say, 100 times dimension function evaluations needed to + get satisfactory solutions, +* non-separable, ill-conditioned, or rugged/multi-modal landscapes. +The CMA-ES is quite reliable, however for small budgets (fewer function +evaluations than, say, 100 times dimension) or in very small dimensions +better (i.e. faster) methods are available. +The ``pycma`` module provides two independent implementations of the +CMA-ES algorithm in the classes ``cma.CMAEvolutionStrategy`` and +``cma.purecma.CMAES``. + +%package help +Summary: Development documents and examples for cma +Provides: python3-cma-doc +%description help +A stochastic numerical optimization algorithm for difficult (non-convex, +ill-conditioned, multi-modal, rugged, noisy) optimization problems in +continuous search spaces, implemented in Python. +Typical domain of application are bound-constrained or unconstrained +objective functions with: +* search space dimension between, say, 5 and (a few) 100, +* no gradients available, +* at least, say, 100 times dimension function evaluations needed to + get satisfactory solutions, +* non-separable, ill-conditioned, or rugged/multi-modal landscapes. +The CMA-ES is quite reliable, however for small budgets (fewer function +evaluations than, say, 100 times dimension) or in very small dimensions +better (i.e. faster) methods are available. +The ``pycma`` module provides two independent implementations of the +CMA-ES algorithm in the classes ``cma.CMAEvolutionStrategy`` and +``cma.purecma.CMAES``. + +%prep +%autosetup -n cma-3.3.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-cma -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Thu Mar 09 2023 Python_Bot <Python_Bot@openeuler.org> - 3.3.0-1 +- Package Spec generated @@ -0,0 +1 @@ +d9ddd1c7485f2c833c3aa2c5781c6e76 cma-3.3.0.tar.gz |