summaryrefslogtreecommitdiff
path: root/python-compas-cloud.spec
blob: 1b8ec73c35471cf99cefdecb68c0b4953de3d49a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
%global _empty_manifest_terminate_build 0
Name:		python-compas-cloud
Version:	0.4.1
Release:	1
Summary:	COMPAS package for cloud computing
License:	MIT
URL:		https://github.com/BlockResearchGroup/compas_cloud
Source0:	https://mirrors.aliyun.com/pypi/web/packages/a0/b3/8044c8f2a102fd301db2de855ffe712b243141247583827b0b1a4124f9e8/compas_cloud-0.4.1.tar.gz
BuildArch:	noarch

Requires:	python3-autobahn
Requires:	python3-websockets
Requires:	python3-compas

%description
# compas_cloud
compas_cloud is the further development of `compas.rpc` module. It uses websocktes instead of RESTful APIs to allow bi-directional communications between various front-end programs like Rhino, GH, RhinoVault2, blender or web-based viewers that are implemented in different enviroments including CPython, IronPython and Javascript. It also allows to save certain variables to backend inside a user session to avoid overheads created by redundant data transfers.

## Installation

### Install from source
```bash
git clone https://github.com/BlockResearchGroup/compas_cloud.git
pip install -e .
```


### Install for Rhino
```bash
python -m compas_rhino.install -p compas_cloud
```


## Using Proxy

### Running the sever:

1. Start from command line:
    ```bash
    python -m compas_cloud.server
    ```  
2. The proxy will automatically start a server in background if there isn't one to connect to. If the server is started this way, it will keep operating in background and reconnect if a new proxy is create later.

### Basic Usage
One of the main purposes of compas_cloud is to allow usage of full COMPAS functionalities in more closed envinroments like IronPython. The following example shows how to use a numpy based COMPAS function through a proxy which can be run in softwares like Rhino:  
[basic.py](examples/basic.py)
```python
from compas_cloud import Proxy
from compas.geometry import Translation


proxy = Proxy()
transform_points_numpy = proxy.function('compas.geometry.transform_points_numpy')
# create a proxy funciton

pts = [[0,0,0], [1,0,0]]
T = Translation([100, 0, 0]).matrix
transform_points_numpy(pts, T) # call the function through proxy
print(result)
# will print: [[100.0, 0.0 ,0.0], [101.0, 0.0, 0.0]]
```

### Caching
Compas_cloud allows to cache data or function outputs at server side instead of sending them to the front-end all the time. This can vastly improve the performance for long iterative operations that involves large amount of data inputs and outputs.

[caching.py](examples/caching.py)
```python
from compas_cloud import Proxy
from compas.geometry import Translation

# CACHING INPUT PARAMETERS

proxy = Proxy()
transform_points_numpy = proxy.function('compas.geometry.transform_points_numpy')
# create a proxy funciton

pts = [[0,0,0], [1,0,0]]
pts_cache = proxy.cache(pts) # cache the object to server side and return its reference
print(pts_cache) # will print: {'cached': some_unique_id}

T = Translation([100, 0, 0]).matrix
result = transform_points_numpy(pts_cache, T) # call the function through proxy
print(result) # will print: [[100.0, 0.0 ,0.0], [101.0, 0.0, 0.0]]



# CACHING RETURNED DATA

transform_points_numpy = proxy.function('compas.geometry.transform_points_numpy', cache=True)
# this function will now return a cache object instead of the actual data

pts = [[0,0,0], [1,0,0]]
pts_cache = proxy.cache(pts)
print(pts_cache) # will print: {'cached': some_unique_id}

T = Translation([100, 0, 0]).matrix
result_cache = transform_points_numpy(pts_cache, T) # call the function through proxy
print(result_cache) # will print: {'cached': some_unique_id}

result = proxy.get(result_cache) # fetch the actual data of the cache object
print(result) # will print: [[100.0, 0.0 ,0.0], [101.0, 0.0, 0.0]]
```

### Server control
User can `restart/check/shutdown` a connected server from proxy with commands in following example: [server_control.py](examples/server_control.py)
```python
from compas_cloud import Proxy
import time

print("\n starting a new Proxy and by default starts a server in background")
proxy = Proxy(background=True)
time.sleep(3)

print("\n restarting the background server and open a new one in a prompt console")
proxy.background = False
proxy.restart()
time.sleep(3)

print("\n check if the proxy is healthily connected to server")
print(proxy.check())
time.sleep(3)


print("\n shut the the server and quite the program")
proxy.shutdown()
time.sleep(3)
```


### Other Examples
A [benchmark test](examples/benchmark.py) comparing pure python and numpy with caching to transform 10k points for 100 times: 
```bash
python examples/benchmark.py
```

[Iterative plotting](examples/dr_numpy.py) example with callbacks:    
```bash
python examples/dr_numpy.py
```

[Using non-compas packages like numpy with IronPython](examples/example_numpy.py):  
run `examples/example_numpy.py` with Rhino


## Using Sessions (Currently only work with MacOS/Linux)
`Compas_cloud.Sessions` is a task-manager class that helps to execute a batch of long-lasting tasks such as FEA and DEM simulations. It creates a queue of tasks and a collection of workers to execute the tasks in parallel and save the program logs into each corresponding locations. `Sessions` can be run either locally or in a background server through `Proxy`.

### Examples

#### [Running Sessions Locally](examples/sessions_local.py):
```bash
python examples/sessions_local.py
```

```python
from compas_cloud import Sessions

# define a psuedo task that will take few seconds to finish
def func(a):
    import time

    for i in range(a):
        time.sleep(1)
        print('sleeped ', i, 's')

# initiate a session object, and specify where the logs will be stored and number of workers
# if no log_path is given, all logs will be streamed to terminal and not saved
# the default worker_num is equal to the number of cpus accessible on the computer
s = Sessions(log_path=None, worker_num=4)

# add several tasks to the session using different parameters
s.add_task(func, 1)
s.add_task(func, 2)
s.add_task(func, 3)
s.add_task(func, 4)
s.add_task(func, 5)

# kick of the taks and start to listen to the events when tasks start or finish
s.start()
s.listen()
```

You should see following logs:

```
{'waiting': 5, 'running': 0, 'failed': 0, 'finished': 0, 'total': 5} ________ START
{'waiting': 5, 'running': 0, 'failed': 0, 'finished': 0, 'total': 5} ________ using 4 workers
{'waiting': 5, 'running': 0, 'failed': 0, 'finished': 0, 'total': 5} ________ worker 58884 started
{'waiting': 4, 'running': 1, 'failed': 0, 'finished': 0, 'total': 5} ________ task-0: started
{'waiting': 4, 'running': 1, 'failed': 0, 'finished': 0, 'total': 5} ________ worker 58885 started
{'waiting': 4, 'running': 1, 'failed': 0, 'finished': 0, 'total': 5} ________ task-0: streaming log to temp/task-0.log
{'waiting': 3, 'running': 2, 'failed': 0, 'finished': 0, 'total': 5} ________ task-1: started
...

{'waiting': 0, 'running': 0, 'failed': 0, 'finished': 5, 'total': 5} ________ task-4: finished
{'waiting': 0, 'running': 0, 'failed': 0, 'finished': 5, 'total': 5} ________ worker 58884 terminated
{'waiting': 0, 'running': 0, 'failed': 0, 'finished': 5, 'total': 5} ________ FINISHED
```


####  [Running Sessions With Proxy](examples/sessions_local.py):
```bash
python examples/sessions_remote.py
```

```python
from compas_cloud import Proxy

# define a psuedo task that will take few seconds to finish
def func(a):
    import time

    for i in range(a):
        time.sleep(1)
        print('sleeped ', i, 's')


# initiate a Sessions object through Proxy that connects to a background server
p = Proxy()
s = p.Sessions()

# add several tasks to the session using different parameters
s.add_task(func, 1)
s.add_task(func, 2)
s.add_task(func, 3)
s.add_task(func, 4)
s.add_task(func, 5)

# kick of the taks and start to listen to the events when tasks start or finish
s.start()
s.listen()
```

You should be able to see same logs from above example


%package -n python3-compas-cloud
Summary:	COMPAS package for cloud computing
Provides:	python-compas-cloud
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-compas-cloud
# compas_cloud
compas_cloud is the further development of `compas.rpc` module. It uses websocktes instead of RESTful APIs to allow bi-directional communications between various front-end programs like Rhino, GH, RhinoVault2, blender or web-based viewers that are implemented in different enviroments including CPython, IronPython and Javascript. It also allows to save certain variables to backend inside a user session to avoid overheads created by redundant data transfers.

## Installation

### Install from source
```bash
git clone https://github.com/BlockResearchGroup/compas_cloud.git
pip install -e .
```


### Install for Rhino
```bash
python -m compas_rhino.install -p compas_cloud
```


## Using Proxy

### Running the sever:

1. Start from command line:
    ```bash
    python -m compas_cloud.server
    ```  
2. The proxy will automatically start a server in background if there isn't one to connect to. If the server is started this way, it will keep operating in background and reconnect if a new proxy is create later.

### Basic Usage
One of the main purposes of compas_cloud is to allow usage of full COMPAS functionalities in more closed envinroments like IronPython. The following example shows how to use a numpy based COMPAS function through a proxy which can be run in softwares like Rhino:  
[basic.py](examples/basic.py)
```python
from compas_cloud import Proxy
from compas.geometry import Translation


proxy = Proxy()
transform_points_numpy = proxy.function('compas.geometry.transform_points_numpy')
# create a proxy funciton

pts = [[0,0,0], [1,0,0]]
T = Translation([100, 0, 0]).matrix
transform_points_numpy(pts, T) # call the function through proxy
print(result)
# will print: [[100.0, 0.0 ,0.0], [101.0, 0.0, 0.0]]
```

### Caching
Compas_cloud allows to cache data or function outputs at server side instead of sending them to the front-end all the time. This can vastly improve the performance for long iterative operations that involves large amount of data inputs and outputs.

[caching.py](examples/caching.py)
```python
from compas_cloud import Proxy
from compas.geometry import Translation

# CACHING INPUT PARAMETERS

proxy = Proxy()
transform_points_numpy = proxy.function('compas.geometry.transform_points_numpy')
# create a proxy funciton

pts = [[0,0,0], [1,0,0]]
pts_cache = proxy.cache(pts) # cache the object to server side and return its reference
print(pts_cache) # will print: {'cached': some_unique_id}

T = Translation([100, 0, 0]).matrix
result = transform_points_numpy(pts_cache, T) # call the function through proxy
print(result) # will print: [[100.0, 0.0 ,0.0], [101.0, 0.0, 0.0]]



# CACHING RETURNED DATA

transform_points_numpy = proxy.function('compas.geometry.transform_points_numpy', cache=True)
# this function will now return a cache object instead of the actual data

pts = [[0,0,0], [1,0,0]]
pts_cache = proxy.cache(pts)
print(pts_cache) # will print: {'cached': some_unique_id}

T = Translation([100, 0, 0]).matrix
result_cache = transform_points_numpy(pts_cache, T) # call the function through proxy
print(result_cache) # will print: {'cached': some_unique_id}

result = proxy.get(result_cache) # fetch the actual data of the cache object
print(result) # will print: [[100.0, 0.0 ,0.0], [101.0, 0.0, 0.0]]
```

### Server control
User can `restart/check/shutdown` a connected server from proxy with commands in following example: [server_control.py](examples/server_control.py)
```python
from compas_cloud import Proxy
import time

print("\n starting a new Proxy and by default starts a server in background")
proxy = Proxy(background=True)
time.sleep(3)

print("\n restarting the background server and open a new one in a prompt console")
proxy.background = False
proxy.restart()
time.sleep(3)

print("\n check if the proxy is healthily connected to server")
print(proxy.check())
time.sleep(3)


print("\n shut the the server and quite the program")
proxy.shutdown()
time.sleep(3)
```


### Other Examples
A [benchmark test](examples/benchmark.py) comparing pure python and numpy with caching to transform 10k points for 100 times: 
```bash
python examples/benchmark.py
```

[Iterative plotting](examples/dr_numpy.py) example with callbacks:    
```bash
python examples/dr_numpy.py
```

[Using non-compas packages like numpy with IronPython](examples/example_numpy.py):  
run `examples/example_numpy.py` with Rhino


## Using Sessions (Currently only work with MacOS/Linux)
`Compas_cloud.Sessions` is a task-manager class that helps to execute a batch of long-lasting tasks such as FEA and DEM simulations. It creates a queue of tasks and a collection of workers to execute the tasks in parallel and save the program logs into each corresponding locations. `Sessions` can be run either locally or in a background server through `Proxy`.

### Examples

#### [Running Sessions Locally](examples/sessions_local.py):
```bash
python examples/sessions_local.py
```

```python
from compas_cloud import Sessions

# define a psuedo task that will take few seconds to finish
def func(a):
    import time

    for i in range(a):
        time.sleep(1)
        print('sleeped ', i, 's')

# initiate a session object, and specify where the logs will be stored and number of workers
# if no log_path is given, all logs will be streamed to terminal and not saved
# the default worker_num is equal to the number of cpus accessible on the computer
s = Sessions(log_path=None, worker_num=4)

# add several tasks to the session using different parameters
s.add_task(func, 1)
s.add_task(func, 2)
s.add_task(func, 3)
s.add_task(func, 4)
s.add_task(func, 5)

# kick of the taks and start to listen to the events when tasks start or finish
s.start()
s.listen()
```

You should see following logs:

```
{'waiting': 5, 'running': 0, 'failed': 0, 'finished': 0, 'total': 5} ________ START
{'waiting': 5, 'running': 0, 'failed': 0, 'finished': 0, 'total': 5} ________ using 4 workers
{'waiting': 5, 'running': 0, 'failed': 0, 'finished': 0, 'total': 5} ________ worker 58884 started
{'waiting': 4, 'running': 1, 'failed': 0, 'finished': 0, 'total': 5} ________ task-0: started
{'waiting': 4, 'running': 1, 'failed': 0, 'finished': 0, 'total': 5} ________ worker 58885 started
{'waiting': 4, 'running': 1, 'failed': 0, 'finished': 0, 'total': 5} ________ task-0: streaming log to temp/task-0.log
{'waiting': 3, 'running': 2, 'failed': 0, 'finished': 0, 'total': 5} ________ task-1: started
...

{'waiting': 0, 'running': 0, 'failed': 0, 'finished': 5, 'total': 5} ________ task-4: finished
{'waiting': 0, 'running': 0, 'failed': 0, 'finished': 5, 'total': 5} ________ worker 58884 terminated
{'waiting': 0, 'running': 0, 'failed': 0, 'finished': 5, 'total': 5} ________ FINISHED
```


####  [Running Sessions With Proxy](examples/sessions_local.py):
```bash
python examples/sessions_remote.py
```

```python
from compas_cloud import Proxy

# define a psuedo task that will take few seconds to finish
def func(a):
    import time

    for i in range(a):
        time.sleep(1)
        print('sleeped ', i, 's')


# initiate a Sessions object through Proxy that connects to a background server
p = Proxy()
s = p.Sessions()

# add several tasks to the session using different parameters
s.add_task(func, 1)
s.add_task(func, 2)
s.add_task(func, 3)
s.add_task(func, 4)
s.add_task(func, 5)

# kick of the taks and start to listen to the events when tasks start or finish
s.start()
s.listen()
```

You should be able to see same logs from above example


%package help
Summary:	Development documents and examples for compas-cloud
Provides:	python3-compas-cloud-doc
%description help
# compas_cloud
compas_cloud is the further development of `compas.rpc` module. It uses websocktes instead of RESTful APIs to allow bi-directional communications between various front-end programs like Rhino, GH, RhinoVault2, blender or web-based viewers that are implemented in different enviroments including CPython, IronPython and Javascript. It also allows to save certain variables to backend inside a user session to avoid overheads created by redundant data transfers.

## Installation

### Install from source
```bash
git clone https://github.com/BlockResearchGroup/compas_cloud.git
pip install -e .
```


### Install for Rhino
```bash
python -m compas_rhino.install -p compas_cloud
```


## Using Proxy

### Running the sever:

1. Start from command line:
    ```bash
    python -m compas_cloud.server
    ```  
2. The proxy will automatically start a server in background if there isn't one to connect to. If the server is started this way, it will keep operating in background and reconnect if a new proxy is create later.

### Basic Usage
One of the main purposes of compas_cloud is to allow usage of full COMPAS functionalities in more closed envinroments like IronPython. The following example shows how to use a numpy based COMPAS function through a proxy which can be run in softwares like Rhino:  
[basic.py](examples/basic.py)
```python
from compas_cloud import Proxy
from compas.geometry import Translation


proxy = Proxy()
transform_points_numpy = proxy.function('compas.geometry.transform_points_numpy')
# create a proxy funciton

pts = [[0,0,0], [1,0,0]]
T = Translation([100, 0, 0]).matrix
transform_points_numpy(pts, T) # call the function through proxy
print(result)
# will print: [[100.0, 0.0 ,0.0], [101.0, 0.0, 0.0]]
```

### Caching
Compas_cloud allows to cache data or function outputs at server side instead of sending them to the front-end all the time. This can vastly improve the performance for long iterative operations that involves large amount of data inputs and outputs.

[caching.py](examples/caching.py)
```python
from compas_cloud import Proxy
from compas.geometry import Translation

# CACHING INPUT PARAMETERS

proxy = Proxy()
transform_points_numpy = proxy.function('compas.geometry.transform_points_numpy')
# create a proxy funciton

pts = [[0,0,0], [1,0,0]]
pts_cache = proxy.cache(pts) # cache the object to server side and return its reference
print(pts_cache) # will print: {'cached': some_unique_id}

T = Translation([100, 0, 0]).matrix
result = transform_points_numpy(pts_cache, T) # call the function through proxy
print(result) # will print: [[100.0, 0.0 ,0.0], [101.0, 0.0, 0.0]]



# CACHING RETURNED DATA

transform_points_numpy = proxy.function('compas.geometry.transform_points_numpy', cache=True)
# this function will now return a cache object instead of the actual data

pts = [[0,0,0], [1,0,0]]
pts_cache = proxy.cache(pts)
print(pts_cache) # will print: {'cached': some_unique_id}

T = Translation([100, 0, 0]).matrix
result_cache = transform_points_numpy(pts_cache, T) # call the function through proxy
print(result_cache) # will print: {'cached': some_unique_id}

result = proxy.get(result_cache) # fetch the actual data of the cache object
print(result) # will print: [[100.0, 0.0 ,0.0], [101.0, 0.0, 0.0]]
```

### Server control
User can `restart/check/shutdown` a connected server from proxy with commands in following example: [server_control.py](examples/server_control.py)
```python
from compas_cloud import Proxy
import time

print("\n starting a new Proxy and by default starts a server in background")
proxy = Proxy(background=True)
time.sleep(3)

print("\n restarting the background server and open a new one in a prompt console")
proxy.background = False
proxy.restart()
time.sleep(3)

print("\n check if the proxy is healthily connected to server")
print(proxy.check())
time.sleep(3)


print("\n shut the the server and quite the program")
proxy.shutdown()
time.sleep(3)
```


### Other Examples
A [benchmark test](examples/benchmark.py) comparing pure python and numpy with caching to transform 10k points for 100 times: 
```bash
python examples/benchmark.py
```

[Iterative plotting](examples/dr_numpy.py) example with callbacks:    
```bash
python examples/dr_numpy.py
```

[Using non-compas packages like numpy with IronPython](examples/example_numpy.py):  
run `examples/example_numpy.py` with Rhino


## Using Sessions (Currently only work with MacOS/Linux)
`Compas_cloud.Sessions` is a task-manager class that helps to execute a batch of long-lasting tasks such as FEA and DEM simulations. It creates a queue of tasks and a collection of workers to execute the tasks in parallel and save the program logs into each corresponding locations. `Sessions` can be run either locally or in a background server through `Proxy`.

### Examples

#### [Running Sessions Locally](examples/sessions_local.py):
```bash
python examples/sessions_local.py
```

```python
from compas_cloud import Sessions

# define a psuedo task that will take few seconds to finish
def func(a):
    import time

    for i in range(a):
        time.sleep(1)
        print('sleeped ', i, 's')

# initiate a session object, and specify where the logs will be stored and number of workers
# if no log_path is given, all logs will be streamed to terminal and not saved
# the default worker_num is equal to the number of cpus accessible on the computer
s = Sessions(log_path=None, worker_num=4)

# add several tasks to the session using different parameters
s.add_task(func, 1)
s.add_task(func, 2)
s.add_task(func, 3)
s.add_task(func, 4)
s.add_task(func, 5)

# kick of the taks and start to listen to the events when tasks start or finish
s.start()
s.listen()
```

You should see following logs:

```
{'waiting': 5, 'running': 0, 'failed': 0, 'finished': 0, 'total': 5} ________ START
{'waiting': 5, 'running': 0, 'failed': 0, 'finished': 0, 'total': 5} ________ using 4 workers
{'waiting': 5, 'running': 0, 'failed': 0, 'finished': 0, 'total': 5} ________ worker 58884 started
{'waiting': 4, 'running': 1, 'failed': 0, 'finished': 0, 'total': 5} ________ task-0: started
{'waiting': 4, 'running': 1, 'failed': 0, 'finished': 0, 'total': 5} ________ worker 58885 started
{'waiting': 4, 'running': 1, 'failed': 0, 'finished': 0, 'total': 5} ________ task-0: streaming log to temp/task-0.log
{'waiting': 3, 'running': 2, 'failed': 0, 'finished': 0, 'total': 5} ________ task-1: started
...

{'waiting': 0, 'running': 0, 'failed': 0, 'finished': 5, 'total': 5} ________ task-4: finished
{'waiting': 0, 'running': 0, 'failed': 0, 'finished': 5, 'total': 5} ________ worker 58884 terminated
{'waiting': 0, 'running': 0, 'failed': 0, 'finished': 5, 'total': 5} ________ FINISHED
```


####  [Running Sessions With Proxy](examples/sessions_local.py):
```bash
python examples/sessions_remote.py
```

```python
from compas_cloud import Proxy

# define a psuedo task that will take few seconds to finish
def func(a):
    import time

    for i in range(a):
        time.sleep(1)
        print('sleeped ', i, 's')


# initiate a Sessions object through Proxy that connects to a background server
p = Proxy()
s = p.Sessions()

# add several tasks to the session using different parameters
s.add_task(func, 1)
s.add_task(func, 2)
s.add_task(func, 3)
s.add_task(func, 4)
s.add_task(func, 5)

# kick of the taks and start to listen to the events when tasks start or finish
s.start()
s.listen()
```

You should be able to see same logs from above example


%prep
%autosetup -n compas_cloud-0.4.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-compas-cloud -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.1-1
- Package Spec generated