1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
%global _empty_manifest_terminate_build 0
Name: python-csdmpy
Version: 0.5
Release: 1
Summary: A python module for the core scientific dataset model.
License: BSD-3-Clause
URL: https://github.com/DeepanshS/csdmpy/
Source0: https://mirrors.aliyun.com/pypi/web/packages/fb/0b/3fb267e9131aa261ffb25133397d0297ac278e577d709be4effd86520162/csdmpy-0.5.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-setuptools
Requires: python3-astropy
Requires: python3-requests
Requires: python3-numexpr
Requires: python3-matplotlib
%description
### Use cases
The data model is _versatile_ in allowing many **use cases for most spectroscopy,
diffraction, and imaging techniques**.

### Data Model
The model supports multi-component datasets associated with continuous
physical quantities that are discretely sampled in a multi-dimensional space
associated with other carefully controlled quantities, for e.g., a mass as a
function of temperature, a current as a function of voltage and time, a signal
voltage as a function of magnetic field gradient strength, a color image with
a red, green, and blue (RGB) light intensity components as a function of two
independent spatial dimensions, or the six components of the symmetric
second-rank diffusion tensor MRI as a function of three independent spatial
dimensions. Additionally, the model supports multiple dependent variables
sharing the same _d_-dimensional coordinate space. For instance,
the simultaneous measurement of current and voltage as a function of time.
Another example would be the simultaneous acquisition of air temperature,
pressure, wind velocity, and
solar-flux as a function of Earth’s latitude and longitude coordinates. We
refer to these dependent variables as _correlated-datasets_.
**Example**
```py
"csdm": {
"version": "1.0",
# A list of Linear, Monotonic, or Labeled dimensions of the multi-dimensional space.
"dimensions": [{
"type": "linear",
"count": 1608,
"increment": "0.08333333333 yr",
"coordinates_offset": "1880.0416666667 yr",
}],
# A list of dependent variables sampling the multi-dimensional space.
"dependent_variables": [{
"type": "internal",
"unit": "mm",
"numeric_type": "float32",
"quantity_type": "scalar",
"component_labels": ["GMSL"],
"components": [
["-183.0, -171.125, ..., 59.6875, 58.5"]
]
}]
}
```
## Installing _csdmpy_ package
$ pip install csdmpy
## How to cite
Please cite the following when used in publication.
1. Srivastava D.J., Vosegaard T., Massiot D., Grandinetti P.J. (2020) Core Scientific Dataset Model: A lightweight and portable model and file format for multi-dimensional scientific data. [PLOS ONE 15(1): e0225953.](https://doi.org/10.1371/journal.pone.0225953)
## Check out the media coverage.
- [<img src="https://inc.cnrs.fr/sites/institut_inc/files/styles/top_left/public/image/cnrs_20180120_0025%20%281%29.jpg?itok=i3wlyGBq" height="64" width="64"> Des chimistes élaborent un nouveau format pour le partage de données scientifiques](https://inc.cnrs.fr/fr/cnrsinfo/des-chimistes-elaborent-un-nouveau-format-pour-le-partage-de-donnees-scientifiques)
- [<img src="https://www.technology.org/texorgwp/wp-content/uploads/2020/01/1920_data-1536x1024.jpg" height="64" width="64"> Simplifying how scientists share data](https://www.technology.org/2020/01/03/simplifying-how-scientists-share-data/)
%package -n python3-csdmpy
Summary: A python module for the core scientific dataset model.
Provides: python-csdmpy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-csdmpy
### Use cases
The data model is _versatile_ in allowing many **use cases for most spectroscopy,
diffraction, and imaging techniques**.

### Data Model
The model supports multi-component datasets associated with continuous
physical quantities that are discretely sampled in a multi-dimensional space
associated with other carefully controlled quantities, for e.g., a mass as a
function of temperature, a current as a function of voltage and time, a signal
voltage as a function of magnetic field gradient strength, a color image with
a red, green, and blue (RGB) light intensity components as a function of two
independent spatial dimensions, or the six components of the symmetric
second-rank diffusion tensor MRI as a function of three independent spatial
dimensions. Additionally, the model supports multiple dependent variables
sharing the same _d_-dimensional coordinate space. For instance,
the simultaneous measurement of current and voltage as a function of time.
Another example would be the simultaneous acquisition of air temperature,
pressure, wind velocity, and
solar-flux as a function of Earth’s latitude and longitude coordinates. We
refer to these dependent variables as _correlated-datasets_.
**Example**
```py
"csdm": {
"version": "1.0",
# A list of Linear, Monotonic, or Labeled dimensions of the multi-dimensional space.
"dimensions": [{
"type": "linear",
"count": 1608,
"increment": "0.08333333333 yr",
"coordinates_offset": "1880.0416666667 yr",
}],
# A list of dependent variables sampling the multi-dimensional space.
"dependent_variables": [{
"type": "internal",
"unit": "mm",
"numeric_type": "float32",
"quantity_type": "scalar",
"component_labels": ["GMSL"],
"components": [
["-183.0, -171.125, ..., 59.6875, 58.5"]
]
}]
}
```
## Installing _csdmpy_ package
$ pip install csdmpy
## How to cite
Please cite the following when used in publication.
1. Srivastava D.J., Vosegaard T., Massiot D., Grandinetti P.J. (2020) Core Scientific Dataset Model: A lightweight and portable model and file format for multi-dimensional scientific data. [PLOS ONE 15(1): e0225953.](https://doi.org/10.1371/journal.pone.0225953)
## Check out the media coverage.
- [<img src="https://inc.cnrs.fr/sites/institut_inc/files/styles/top_left/public/image/cnrs_20180120_0025%20%281%29.jpg?itok=i3wlyGBq" height="64" width="64"> Des chimistes élaborent un nouveau format pour le partage de données scientifiques](https://inc.cnrs.fr/fr/cnrsinfo/des-chimistes-elaborent-un-nouveau-format-pour-le-partage-de-donnees-scientifiques)
- [<img src="https://www.technology.org/texorgwp/wp-content/uploads/2020/01/1920_data-1536x1024.jpg" height="64" width="64"> Simplifying how scientists share data](https://www.technology.org/2020/01/03/simplifying-how-scientists-share-data/)
%package help
Summary: Development documents and examples for csdmpy
Provides: python3-csdmpy-doc
%description help
### Use cases
The data model is _versatile_ in allowing many **use cases for most spectroscopy,
diffraction, and imaging techniques**.

### Data Model
The model supports multi-component datasets associated with continuous
physical quantities that are discretely sampled in a multi-dimensional space
associated with other carefully controlled quantities, for e.g., a mass as a
function of temperature, a current as a function of voltage and time, a signal
voltage as a function of magnetic field gradient strength, a color image with
a red, green, and blue (RGB) light intensity components as a function of two
independent spatial dimensions, or the six components of the symmetric
second-rank diffusion tensor MRI as a function of three independent spatial
dimensions. Additionally, the model supports multiple dependent variables
sharing the same _d_-dimensional coordinate space. For instance,
the simultaneous measurement of current and voltage as a function of time.
Another example would be the simultaneous acquisition of air temperature,
pressure, wind velocity, and
solar-flux as a function of Earth’s latitude and longitude coordinates. We
refer to these dependent variables as _correlated-datasets_.
**Example**
```py
"csdm": {
"version": "1.0",
# A list of Linear, Monotonic, or Labeled dimensions of the multi-dimensional space.
"dimensions": [{
"type": "linear",
"count": 1608,
"increment": "0.08333333333 yr",
"coordinates_offset": "1880.0416666667 yr",
}],
# A list of dependent variables sampling the multi-dimensional space.
"dependent_variables": [{
"type": "internal",
"unit": "mm",
"numeric_type": "float32",
"quantity_type": "scalar",
"component_labels": ["GMSL"],
"components": [
["-183.0, -171.125, ..., 59.6875, 58.5"]
]
}]
}
```
## Installing _csdmpy_ package
$ pip install csdmpy
## How to cite
Please cite the following when used in publication.
1. Srivastava D.J., Vosegaard T., Massiot D., Grandinetti P.J. (2020) Core Scientific Dataset Model: A lightweight and portable model and file format for multi-dimensional scientific data. [PLOS ONE 15(1): e0225953.](https://doi.org/10.1371/journal.pone.0225953)
## Check out the media coverage.
- [<img src="https://inc.cnrs.fr/sites/institut_inc/files/styles/top_left/public/image/cnrs_20180120_0025%20%281%29.jpg?itok=i3wlyGBq" height="64" width="64"> Des chimistes élaborent un nouveau format pour le partage de données scientifiques](https://inc.cnrs.fr/fr/cnrsinfo/des-chimistes-elaborent-un-nouveau-format-pour-le-partage-de-donnees-scientifiques)
- [<img src="https://www.technology.org/texorgwp/wp-content/uploads/2020/01/1920_data-1536x1024.jpg" height="64" width="64"> Simplifying how scientists share data](https://www.technology.org/2020/01/03/simplifying-how-scientists-share-data/)
%prep
%autosetup -n csdmpy-0.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-csdmpy -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5-1
- Package Spec generated
|