summaryrefslogtreecommitdiff
path: root/python-cuda-guass-normal.spec
blob: e396308b4286b82d9fe28a694c8d7439fc50971f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
%global _empty_manifest_terminate_build 0
Name:		python-cuda-guass-normal
Version:	1.13
Release:	1
Summary:	A package used in DNN trainning in ATLAS analysis
License:	MIT
URL:		https://pypi.org/project/cuda-guass-normal/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/bc/a0/9cd5883f14f949a0a8d2103d8ae811af0b41de3e54501de22f7c720cf32b/cuda_guass_normal-1.13.tar.gz
BuildArch:	noarch


%description
Python package use cuda to normalize input variables using cuda package in ATLAS analysis

Function use to do Guassian Normalization:
Mean:
$$\mu_{i}=\frac{\sum x_{i}\times w_{i}}{\sum w_{i}}$$
Variance:
$$\sigma_{i}=\frac{\sum (x_{i}-\mu_{i})^{2}\times w_{i}}{\frac{N-1}{N}\times\sum w_{i}}$$
Normalized input feature:
$$\bar{x_{i}}=\frac{x_{i}-\mu_{i}}{\sigma_{i}}$$

Main function: guass_normal((1),(2),(3))

Input:

(1):Numpy array contain all input features you want to normalize.
(2):Numpy array used to calculate each feature's mean and variance.
(3):1-d Numpy array contains each events weight in (2)

(1) and (2) must have the same number of columns.

cuda_cut((1),(2),(3)): Used to calculate event yield after applying DNN cut.

Input:
(1): 1-d numpy array include the variable  you want to cut.
(2): 1-d numpy array include event weight.
(3): cut threshold 




%package -n python3-cuda-guass-normal
Summary:	A package used in DNN trainning in ATLAS analysis
Provides:	python-cuda-guass-normal
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-cuda-guass-normal
Python package use cuda to normalize input variables using cuda package in ATLAS analysis

Function use to do Guassian Normalization:
Mean:
$$\mu_{i}=\frac{\sum x_{i}\times w_{i}}{\sum w_{i}}$$
Variance:
$$\sigma_{i}=\frac{\sum (x_{i}-\mu_{i})^{2}\times w_{i}}{\frac{N-1}{N}\times\sum w_{i}}$$
Normalized input feature:
$$\bar{x_{i}}=\frac{x_{i}-\mu_{i}}{\sigma_{i}}$$

Main function: guass_normal((1),(2),(3))

Input:

(1):Numpy array contain all input features you want to normalize.
(2):Numpy array used to calculate each feature's mean and variance.
(3):1-d Numpy array contains each events weight in (2)

(1) and (2) must have the same number of columns.

cuda_cut((1),(2),(3)): Used to calculate event yield after applying DNN cut.

Input:
(1): 1-d numpy array include the variable  you want to cut.
(2): 1-d numpy array include event weight.
(3): cut threshold 




%package help
Summary:	Development documents and examples for cuda-guass-normal
Provides:	python3-cuda-guass-normal-doc
%description help
Python package use cuda to normalize input variables using cuda package in ATLAS analysis

Function use to do Guassian Normalization:
Mean:
$$\mu_{i}=\frac{\sum x_{i}\times w_{i}}{\sum w_{i}}$$
Variance:
$$\sigma_{i}=\frac{\sum (x_{i}-\mu_{i})^{2}\times w_{i}}{\frac{N-1}{N}\times\sum w_{i}}$$
Normalized input feature:
$$\bar{x_{i}}=\frac{x_{i}-\mu_{i}}{\sigma_{i}}$$

Main function: guass_normal((1),(2),(3))

Input:

(1):Numpy array contain all input features you want to normalize.
(2):Numpy array used to calculate each feature's mean and variance.
(3):1-d Numpy array contains each events weight in (2)

(1) and (2) must have the same number of columns.

cuda_cut((1),(2),(3)): Used to calculate event yield after applying DNN cut.

Input:
(1): 1-d numpy array include the variable  you want to cut.
(2): 1-d numpy array include event weight.
(3): cut threshold 




%prep
%autosetup -n cuda_guass_normal-1.13

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-cuda-guass-normal -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.13-1
- Package Spec generated