summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-31 06:14:26 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-31 06:14:26 +0000
commit8a5e12ff8771187848008c1393d9bf69690238ba (patch)
tree05b6383d21590456c690bc654d899c5297c4371e
parentd3654fdb704f96a5bdfe9bccbda87f98fb889639 (diff)
automatic import of python-dabest
-rw-r--r--.gitignore1
-rw-r--r--python-dabest.spec128
-rw-r--r--sources1
3 files changed, 130 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..6a9f83c 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/dabest-2023.2.14.tar.gz
diff --git a/python-dabest.spec b/python-dabest.spec
new file mode 100644
index 0000000..c897a2a
--- /dev/null
+++ b/python-dabest.spec
@@ -0,0 +1,128 @@
+%global _empty_manifest_terminate_build 0
+Name: python-dabest
+Version: 2023.2.14
+Release: 1
+Summary: Data Analysis and Visualization using Bootstrap-Coupled Estimation.
+License: BSD 3-clause Clear License
+URL: https://acclab.github.io/DABEST-python-docs
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6b/63/7801bafdc9c9f160799115e8498aa47682f8ff40db79737554e1b8fd2a1a/dabest-2023.2.14.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-scipy
+Requires: python3-pandas
+Requires: python3-matplotlib
+Requires: python3-seaborn
+Requires: python3-lqrt
+Requires: python3-pytest
+Requires: python3-pytest-mpl
+
+%description
+Estimation statistics is a simple framework <https://thenewstatistics.com/itns/>
+that—while avoiding the pitfalls of significance testing—uses familiar statistical
+concepts: means, mean differences, and error bars. More importantly, it focuses on
+the effect size of one's experiment/intervention, as opposed to
+significance testing.
+
+An estimation plot has two key features. Firstly, it presents all
+datapoints as a swarmplot, which orders each point to display the
+underlying distribution. Secondly, an estimation plot presents the
+effect size as a bootstrap 95% confidence interval on a separate but
+aligned axes.
+
+Please cite this work as:
+Moving beyond P values: Everyday data analysis with estimation plots
+Joses Ho, Tayfun Tumkaya, Sameer Aryal, Hyungwon Choi, Adam Claridge-Chang
+https://doi.org/10.1101/377978
+
+
+%package -n python3-dabest
+Summary: Data Analysis and Visualization using Bootstrap-Coupled Estimation.
+Provides: python-dabest
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-dabest
+Estimation statistics is a simple framework <https://thenewstatistics.com/itns/>
+that—while avoiding the pitfalls of significance testing—uses familiar statistical
+concepts: means, mean differences, and error bars. More importantly, it focuses on
+the effect size of one's experiment/intervention, as opposed to
+significance testing.
+
+An estimation plot has two key features. Firstly, it presents all
+datapoints as a swarmplot, which orders each point to display the
+underlying distribution. Secondly, an estimation plot presents the
+effect size as a bootstrap 95% confidence interval on a separate but
+aligned axes.
+
+Please cite this work as:
+Moving beyond P values: Everyday data analysis with estimation plots
+Joses Ho, Tayfun Tumkaya, Sameer Aryal, Hyungwon Choi, Adam Claridge-Chang
+https://doi.org/10.1101/377978
+
+
+%package help
+Summary: Development documents and examples for dabest
+Provides: python3-dabest-doc
+%description help
+Estimation statistics is a simple framework <https://thenewstatistics.com/itns/>
+that—while avoiding the pitfalls of significance testing—uses familiar statistical
+concepts: means, mean differences, and error bars. More importantly, it focuses on
+the effect size of one's experiment/intervention, as opposed to
+significance testing.
+
+An estimation plot has two key features. Firstly, it presents all
+datapoints as a swarmplot, which orders each point to display the
+underlying distribution. Secondly, an estimation plot presents the
+effect size as a bootstrap 95% confidence interval on a separate but
+aligned axes.
+
+Please cite this work as:
+Moving beyond P values: Everyday data analysis with estimation plots
+Joses Ho, Tayfun Tumkaya, Sameer Aryal, Hyungwon Choi, Adam Claridge-Chang
+https://doi.org/10.1101/377978
+
+
+%prep
+%autosetup -n dabest-2023.2.14
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-dabest -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 2023.2.14-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..e1fd6ec
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+8c1a38fab335308b7550de3ab318e55a dabest-2023.2.14.tar.gz