1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
%global _empty_manifest_terminate_build 0
Name: python-dabest
Version: 2023.2.14
Release: 1
Summary: Data Analysis and Visualization using Bootstrap-Coupled Estimation.
License: BSD 3-clause Clear License
URL: https://acclab.github.io/DABEST-python-docs
Source0: https://mirrors.aliyun.com/pypi/web/packages/6b/63/7801bafdc9c9f160799115e8498aa47682f8ff40db79737554e1b8fd2a1a/dabest-2023.2.14.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-matplotlib
Requires: python3-seaborn
Requires: python3-lqrt
Requires: python3-pytest
Requires: python3-pytest-mpl
%description
Estimation statistics is a simple framework <https://thenewstatistics.com/itns/>
that—while avoiding the pitfalls of significance testing—uses familiar statistical
concepts: means, mean differences, and error bars. More importantly, it focuses on
the effect size of one's experiment/intervention, as opposed to
significance testing.
An estimation plot has two key features. Firstly, it presents all
datapoints as a swarmplot, which orders each point to display the
underlying distribution. Secondly, an estimation plot presents the
effect size as a bootstrap 95% confidence interval on a separate but
aligned axes.
Please cite this work as:
Moving beyond P values: Everyday data analysis with estimation plots
Joses Ho, Tayfun Tumkaya, Sameer Aryal, Hyungwon Choi, Adam Claridge-Chang
https://doi.org/10.1101/377978
%package -n python3-dabest
Summary: Data Analysis and Visualization using Bootstrap-Coupled Estimation.
Provides: python-dabest
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dabest
Estimation statistics is a simple framework <https://thenewstatistics.com/itns/>
that—while avoiding the pitfalls of significance testing—uses familiar statistical
concepts: means, mean differences, and error bars. More importantly, it focuses on
the effect size of one's experiment/intervention, as opposed to
significance testing.
An estimation plot has two key features. Firstly, it presents all
datapoints as a swarmplot, which orders each point to display the
underlying distribution. Secondly, an estimation plot presents the
effect size as a bootstrap 95% confidence interval on a separate but
aligned axes.
Please cite this work as:
Moving beyond P values: Everyday data analysis with estimation plots
Joses Ho, Tayfun Tumkaya, Sameer Aryal, Hyungwon Choi, Adam Claridge-Chang
https://doi.org/10.1101/377978
%package help
Summary: Development documents and examples for dabest
Provides: python3-dabest-doc
%description help
Estimation statistics is a simple framework <https://thenewstatistics.com/itns/>
that—while avoiding the pitfalls of significance testing—uses familiar statistical
concepts: means, mean differences, and error bars. More importantly, it focuses on
the effect size of one's experiment/intervention, as opposed to
significance testing.
An estimation plot has two key features. Firstly, it presents all
datapoints as a swarmplot, which orders each point to display the
underlying distribution. Secondly, an estimation plot presents the
effect size as a bootstrap 95% confidence interval on a separate but
aligned axes.
Please cite this work as:
Moving beyond P values: Everyday data analysis with estimation plots
Joses Ho, Tayfun Tumkaya, Sameer Aryal, Hyungwon Choi, Adam Claridge-Chang
https://doi.org/10.1101/377978
%prep
%autosetup -n dabest-2023.2.14
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dabest -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 2023.2.14-1
- Package Spec generated
|