summaryrefslogtreecommitdiff
path: root/python-dagster.spec
blob: d5156fa834bdb7e93a8b5f400940aec0b3971c69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
%global _empty_manifest_terminate_build 0
Name:		python-dagster
Version:	1.2.6
Release:	1
Summary:	The data orchestration platform built for productivity.
License:	Apache-2.0
URL:		https://dagster.io
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/e7/36/50f856c3892ea03ead3a6913ef60e1c107bf84eb585d7a5282e28d2b3d96/dagster-1.2.6.tar.gz
BuildArch:	noarch

Requires:	python3-click
Requires:	python3-coloredlogs
Requires:	python3-Jinja2
Requires:	python3-PyYAML
Requires:	python3-alembic
Requires:	python3-croniter
Requires:	python3-grpcio-health-checking
Requires:	python3-packaging
Requires:	python3-pendulum
Requires:	python3-protobuf
Requires:	python3-dateutil
Requires:	python3-dotenv
Requires:	python3-pytz
Requires:	python3-requests
Requires:	python3-setuptools
Requires:	python3-tabulate
Requires:	python3-tomli
Requires:	python3-tqdm
Requires:	python3-typing-extensions
Requires:	python3-sqlalchemy
Requires:	python3-toposort
Requires:	python3-watchdog
Requires:	python3-docstring-parser
Requires:	python3-universal-pathlib
Requires:	python3-pydantic
Requires:	python3-psutil
Requires:	python3-pywin32
Requires:	python3-grpcio
Requires:	python3-contextvars
Requires:	python3-grpcio
Requires:	python3-black[jupyter]
Requires:	python3-docker
Requires:	python3-mypy
Requires:	python3-pyright
Requires:	python3-pandas-stubs
Requires:	python3-types-backports
Requires:	python3-types-certifi
Requires:	python3-types-chardet
Requires:	python3-types-croniter
Requires:	python3-types-cryptography
Requires:	python3-types-mock
Requires:	python3-types-paramiko
Requires:	python3-types-pkg-resources
Requires:	python3-types-pyOpenSSL
Requires:	python3-types-python-dateutil
Requires:	python3-types-PyYAML
Requires:	python3-types-pytz
Requires:	python3-types-requests
Requires:	python3-types-simplejson
Requires:	python3-types-six
Requires:	python3-types-sqlalchemy
Requires:	python3-types-tabulate
Requires:	python3-types-tzlocal
Requires:	python3-types-toml
Requires:	python3-ruff
Requires:	python3-docker
Requires:	python3-grpcio-tools
Requires:	python3-mock
Requires:	python3-objgraph
Requires:	python3-pytest-cov
Requires:	python3-pytest-dependency
Requires:	python3-pytest-mock
Requires:	python3-pytest-rerunfailures
Requires:	python3-pytest-runner
Requires:	python3-pytest-xdist
Requires:	python3-pytest
Requires:	python3-responses
Requires:	python3-snapshottest
Requires:	python3-tox
Requires:	python3-yamllint
Requires:	python3-buildkite-test-collector

%description
<div align="center">
  <!-- Note: Do not try adding the dark mode version here with the `picture` element, it will break formatting in PyPI -->
  <a target="_blank" href="https://dagster.io" style="background:none">
    <img alt="dagster logo" src=".github/dagster-readme-header.svg" width="auto" height="100%">
  </a>
<p style="text-align: center;">Remember to <a target="_blank" href="https://github.com/dagster-io/dagster">star the Dagster GitHub repo</a> for future reference.</p>
  <a target="_blank" href="https://github.com/dagster-io/dagster" style="background:none">
    <img src="https://img.shields.io/github/stars/dagster-io/dagster?labelColor=4F43DD&color=163B36&logo=github">
  </a>
  <a target="_blank" href="https://github.com/dagster-io/dagster/blob/master/LICENSE" style="background:none">
    <img src="https://img.shields.io/badge/License-Apache_2.0-blue.svg?label=license&labelColor=4F43DD&color=163B36">
  </a>
  <a target="_blank" href="https://pypi.org/project/dagster/" style="background:none">
    <img src="https://img.shields.io/pypi/v/dagster?labelColor=4F43DD&color=163B36">
  </a>
  <a target="_blank" href="https://pypi.org/project/dagster/" style="background:none">
    <img src="https://img.shields.io/pypi/pyversions/dagster?labelColor=4F43DD&color=163B36">
  </a>
  <a target="_blank" href="https://twitter.com/dagster" style="background:none">
    <img src="https://img.shields.io/badge/twitter-dagster-blue.svg?labelColor=4F43DD&color=163B36&logo=twitter" />
  </a>
  <a target="_blank" href="https://dagster.io/slack" style="background:none">
    <img src="https://img.shields.io/badge/slack-dagster-blue.svg?labelColor=4F43DD&color=163B36&logo=slack" />
  </a>
  <a target="_blank" href="https://linkedin.com/showcase/dagster" style="background:none">
    <img src="https://img.shields.io/badge/linkedin-dagster-blue.svg?labelColor=4F43DD&color=163B36&logo=linkedin" />
  </a>
</div>

__Dagster is a cloud-native data pipeline orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability.__

It is designed for **developing and maintaining data assets**, such as tables, data sets, machine learning models, and reports.

With Dagster, you declare—as Python functions—the data assets that you want to build. Dagster then helps you run your functions at the right time and keep your assets up-to-date.

Here is an example of a graph of three assets defined in Python:

```python
from dagster import asset
from pandas import DataFrame, read_html, get_dummies
from sklearn.linear_model import LinearRegression

@asset
def country_populations() -> DataFrame:
    df = read_html("https://tinyurl.com/mry64ebh")[0]
    df.columns = ["country", "continent", "rg", "pop2018", "pop2019", "change"]
    df["change"] = df["change"].str.rstrip("%").str.replace("−", "-").astype("float")
    return df

@asset
def continent_change_model(country_populations: DataFrame) -> LinearRegression:
    data = country_populations.dropna(subset=["change"])
    return LinearRegression().fit(get_dummies(data[["continent"]]), data["change"])

@asset
def continent_stats(country_populations: DataFrame, continent_change_model: LinearRegression) -> DataFrame:
    result = country_populations.groupby("continent").sum()
    result["pop_change_factor"] = continent_change_model.coef_
    return result
```
The graph loaded into Dagster's web UI:

<p align="center">
  <img width="400px" alt="An example asset graph as rendered in the Dagster UI" src="https://user-images.githubusercontent.com/654855/183537484-48dde394-91f2-4de0-9b17-a70b3e9a3823.png">
</p>

Dagster is built to be used at every stage of the data development lifecycle - local development, unit tests, integration tests, staging environments, all the way up to production.

## Quick Start:

If you're new to Dagster, we recommend reading about its [core concepts](https://docs.dagster.io/concepts) or learning with the hands-on [tutorial](https://docs.dagster.io/tutorial).

Dagster is available on PyPI and officially supports Python 3.7+.

```bash
pip install dagster dagit
```

This installs two modules:

- **Dagster**: The core programming model.
- **Dagit**: The web interface for developing and operating Dagster jobs and assets.

Running on Using a Mac with an M1 or M2 chip? Check the [install details here](https://docs.dagster.io/getting-started/install#installing-dagster-into-an-existing-python-environment).

## Documentation

You can find the full Dagster documentation [here](https://docs.dagster.io), including the ['getting started' guide](https://docs.dagster.io/getting-started).

<hr/>

## Key Features:

  <p align="center">
    <img width="100%" alt="image" src=".github/key-features-cards.svg">
  </p>

### Dagster as a productivity platform
Identify the key assets you need to create using a declarative approach, or you can focus on running basic tasks. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.

### Dagster as a robust orchestration engine
Put your pipelines into production with a robust multi-tenant, multi-tool engine that scales technically and organizationally.

### Dagster as a unified control plane
Maintain control over your data as the complexity scales. Centralize your metadata in one tool with built-in observability, diagnostics, cataloging, and lineage. Spot any issues and identify performance improvement opportunities.

<hr />

## Master the Modern Data Stack with integrations

Dagster provides a growing library of integrations for today’s most popular data tools. Integrate with the tools you already use, and deploy to your infrastructure.

<br/>
<p align="center">
    <a target="_blank" href="https://dagster.io/integrations" style="background:none">
        <img width="100%" alt="image" src=".github/integrations-bar-for-readme.png">
    </a>
</p>

## Community

Connect with thousands of other data practitioners building with Dagster. Share knowledge, get help,
and contribute to the open-source project. To see featured material and upcoming events, check out
our [Dagster Community](https://dagster.io/community) page.

Join our community here:

- 🌟 [Star us on Github](https://github.com/dagster-io/dagster)
- 📥 [Subscribe to our Newsletter](https://dagster.io/newsletter-signup)
- 🐦 [Follow us on Twitter](https://twitter.com/dagster)
- 🕴️ [Follow us on LinkedIn](https://linkedin.com/showcase/dagster)
- 📺 [Subscribe to our YouTube channel](https://www.youtube.com/channel/UCfLnv9X8jyHTe6gJ4hVBo9Q)
- 📚 [Read our blog posts](https://dagster.io/blog)
- 👋 [Join us on Slack](https://dagster.io/slack)
- 🗃 [Browse Slack archives](https://discuss.dagster.io)
- ✏️ [Start a Github Discussion](https://github.com/dagster-io/dagster/discussions)

## Contributing

For details on contributing or running the project for development, check out our [contributing
guide](https://docs.dagster.io/community/contributing/).

## License

Dagster is [Apache 2.0 licensed](https://github.com/dagster-io/dagster/blob/master/LICENSE).


%package -n python3-dagster
Summary:	The data orchestration platform built for productivity.
Provides:	python-dagster
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-dagster
<div align="center">
  <!-- Note: Do not try adding the dark mode version here with the `picture` element, it will break formatting in PyPI -->
  <a target="_blank" href="https://dagster.io" style="background:none">
    <img alt="dagster logo" src=".github/dagster-readme-header.svg" width="auto" height="100%">
  </a>
<p style="text-align: center;">Remember to <a target="_blank" href="https://github.com/dagster-io/dagster">star the Dagster GitHub repo</a> for future reference.</p>
  <a target="_blank" href="https://github.com/dagster-io/dagster" style="background:none">
    <img src="https://img.shields.io/github/stars/dagster-io/dagster?labelColor=4F43DD&color=163B36&logo=github">
  </a>
  <a target="_blank" href="https://github.com/dagster-io/dagster/blob/master/LICENSE" style="background:none">
    <img src="https://img.shields.io/badge/License-Apache_2.0-blue.svg?label=license&labelColor=4F43DD&color=163B36">
  </a>
  <a target="_blank" href="https://pypi.org/project/dagster/" style="background:none">
    <img src="https://img.shields.io/pypi/v/dagster?labelColor=4F43DD&color=163B36">
  </a>
  <a target="_blank" href="https://pypi.org/project/dagster/" style="background:none">
    <img src="https://img.shields.io/pypi/pyversions/dagster?labelColor=4F43DD&color=163B36">
  </a>
  <a target="_blank" href="https://twitter.com/dagster" style="background:none">
    <img src="https://img.shields.io/badge/twitter-dagster-blue.svg?labelColor=4F43DD&color=163B36&logo=twitter" />
  </a>
  <a target="_blank" href="https://dagster.io/slack" style="background:none">
    <img src="https://img.shields.io/badge/slack-dagster-blue.svg?labelColor=4F43DD&color=163B36&logo=slack" />
  </a>
  <a target="_blank" href="https://linkedin.com/showcase/dagster" style="background:none">
    <img src="https://img.shields.io/badge/linkedin-dagster-blue.svg?labelColor=4F43DD&color=163B36&logo=linkedin" />
  </a>
</div>

__Dagster is a cloud-native data pipeline orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability.__

It is designed for **developing and maintaining data assets**, such as tables, data sets, machine learning models, and reports.

With Dagster, you declare—as Python functions—the data assets that you want to build. Dagster then helps you run your functions at the right time and keep your assets up-to-date.

Here is an example of a graph of three assets defined in Python:

```python
from dagster import asset
from pandas import DataFrame, read_html, get_dummies
from sklearn.linear_model import LinearRegression

@asset
def country_populations() -> DataFrame:
    df = read_html("https://tinyurl.com/mry64ebh")[0]
    df.columns = ["country", "continent", "rg", "pop2018", "pop2019", "change"]
    df["change"] = df["change"].str.rstrip("%").str.replace("−", "-").astype("float")
    return df

@asset
def continent_change_model(country_populations: DataFrame) -> LinearRegression:
    data = country_populations.dropna(subset=["change"])
    return LinearRegression().fit(get_dummies(data[["continent"]]), data["change"])

@asset
def continent_stats(country_populations: DataFrame, continent_change_model: LinearRegression) -> DataFrame:
    result = country_populations.groupby("continent").sum()
    result["pop_change_factor"] = continent_change_model.coef_
    return result
```
The graph loaded into Dagster's web UI:

<p align="center">
  <img width="400px" alt="An example asset graph as rendered in the Dagster UI" src="https://user-images.githubusercontent.com/654855/183537484-48dde394-91f2-4de0-9b17-a70b3e9a3823.png">
</p>

Dagster is built to be used at every stage of the data development lifecycle - local development, unit tests, integration tests, staging environments, all the way up to production.

## Quick Start:

If you're new to Dagster, we recommend reading about its [core concepts](https://docs.dagster.io/concepts) or learning with the hands-on [tutorial](https://docs.dagster.io/tutorial).

Dagster is available on PyPI and officially supports Python 3.7+.

```bash
pip install dagster dagit
```

This installs two modules:

- **Dagster**: The core programming model.
- **Dagit**: The web interface for developing and operating Dagster jobs and assets.

Running on Using a Mac with an M1 or M2 chip? Check the [install details here](https://docs.dagster.io/getting-started/install#installing-dagster-into-an-existing-python-environment).

## Documentation

You can find the full Dagster documentation [here](https://docs.dagster.io), including the ['getting started' guide](https://docs.dagster.io/getting-started).

<hr/>

## Key Features:

  <p align="center">
    <img width="100%" alt="image" src=".github/key-features-cards.svg">
  </p>

### Dagster as a productivity platform
Identify the key assets you need to create using a declarative approach, or you can focus on running basic tasks. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.

### Dagster as a robust orchestration engine
Put your pipelines into production with a robust multi-tenant, multi-tool engine that scales technically and organizationally.

### Dagster as a unified control plane
Maintain control over your data as the complexity scales. Centralize your metadata in one tool with built-in observability, diagnostics, cataloging, and lineage. Spot any issues and identify performance improvement opportunities.

<hr />

## Master the Modern Data Stack with integrations

Dagster provides a growing library of integrations for today’s most popular data tools. Integrate with the tools you already use, and deploy to your infrastructure.

<br/>
<p align="center">
    <a target="_blank" href="https://dagster.io/integrations" style="background:none">
        <img width="100%" alt="image" src=".github/integrations-bar-for-readme.png">
    </a>
</p>

## Community

Connect with thousands of other data practitioners building with Dagster. Share knowledge, get help,
and contribute to the open-source project. To see featured material and upcoming events, check out
our [Dagster Community](https://dagster.io/community) page.

Join our community here:

- 🌟 [Star us on Github](https://github.com/dagster-io/dagster)
- 📥 [Subscribe to our Newsletter](https://dagster.io/newsletter-signup)
- 🐦 [Follow us on Twitter](https://twitter.com/dagster)
- 🕴️ [Follow us on LinkedIn](https://linkedin.com/showcase/dagster)
- 📺 [Subscribe to our YouTube channel](https://www.youtube.com/channel/UCfLnv9X8jyHTe6gJ4hVBo9Q)
- 📚 [Read our blog posts](https://dagster.io/blog)
- 👋 [Join us on Slack](https://dagster.io/slack)
- 🗃 [Browse Slack archives](https://discuss.dagster.io)
- ✏️ [Start a Github Discussion](https://github.com/dagster-io/dagster/discussions)

## Contributing

For details on contributing or running the project for development, check out our [contributing
guide](https://docs.dagster.io/community/contributing/).

## License

Dagster is [Apache 2.0 licensed](https://github.com/dagster-io/dagster/blob/master/LICENSE).


%package help
Summary:	Development documents and examples for dagster
Provides:	python3-dagster-doc
%description help
<div align="center">
  <!-- Note: Do not try adding the dark mode version here with the `picture` element, it will break formatting in PyPI -->
  <a target="_blank" href="https://dagster.io" style="background:none">
    <img alt="dagster logo" src=".github/dagster-readme-header.svg" width="auto" height="100%">
  </a>
<p style="text-align: center;">Remember to <a target="_blank" href="https://github.com/dagster-io/dagster">star the Dagster GitHub repo</a> for future reference.</p>
  <a target="_blank" href="https://github.com/dagster-io/dagster" style="background:none">
    <img src="https://img.shields.io/github/stars/dagster-io/dagster?labelColor=4F43DD&color=163B36&logo=github">
  </a>
  <a target="_blank" href="https://github.com/dagster-io/dagster/blob/master/LICENSE" style="background:none">
    <img src="https://img.shields.io/badge/License-Apache_2.0-blue.svg?label=license&labelColor=4F43DD&color=163B36">
  </a>
  <a target="_blank" href="https://pypi.org/project/dagster/" style="background:none">
    <img src="https://img.shields.io/pypi/v/dagster?labelColor=4F43DD&color=163B36">
  </a>
  <a target="_blank" href="https://pypi.org/project/dagster/" style="background:none">
    <img src="https://img.shields.io/pypi/pyversions/dagster?labelColor=4F43DD&color=163B36">
  </a>
  <a target="_blank" href="https://twitter.com/dagster" style="background:none">
    <img src="https://img.shields.io/badge/twitter-dagster-blue.svg?labelColor=4F43DD&color=163B36&logo=twitter" />
  </a>
  <a target="_blank" href="https://dagster.io/slack" style="background:none">
    <img src="https://img.shields.io/badge/slack-dagster-blue.svg?labelColor=4F43DD&color=163B36&logo=slack" />
  </a>
  <a target="_blank" href="https://linkedin.com/showcase/dagster" style="background:none">
    <img src="https://img.shields.io/badge/linkedin-dagster-blue.svg?labelColor=4F43DD&color=163B36&logo=linkedin" />
  </a>
</div>

__Dagster is a cloud-native data pipeline orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability.__

It is designed for **developing and maintaining data assets**, such as tables, data sets, machine learning models, and reports.

With Dagster, you declare—as Python functions—the data assets that you want to build. Dagster then helps you run your functions at the right time and keep your assets up-to-date.

Here is an example of a graph of three assets defined in Python:

```python
from dagster import asset
from pandas import DataFrame, read_html, get_dummies
from sklearn.linear_model import LinearRegression

@asset
def country_populations() -> DataFrame:
    df = read_html("https://tinyurl.com/mry64ebh")[0]
    df.columns = ["country", "continent", "rg", "pop2018", "pop2019", "change"]
    df["change"] = df["change"].str.rstrip("%").str.replace("−", "-").astype("float")
    return df

@asset
def continent_change_model(country_populations: DataFrame) -> LinearRegression:
    data = country_populations.dropna(subset=["change"])
    return LinearRegression().fit(get_dummies(data[["continent"]]), data["change"])

@asset
def continent_stats(country_populations: DataFrame, continent_change_model: LinearRegression) -> DataFrame:
    result = country_populations.groupby("continent").sum()
    result["pop_change_factor"] = continent_change_model.coef_
    return result
```
The graph loaded into Dagster's web UI:

<p align="center">
  <img width="400px" alt="An example asset graph as rendered in the Dagster UI" src="https://user-images.githubusercontent.com/654855/183537484-48dde394-91f2-4de0-9b17-a70b3e9a3823.png">
</p>

Dagster is built to be used at every stage of the data development lifecycle - local development, unit tests, integration tests, staging environments, all the way up to production.

## Quick Start:

If you're new to Dagster, we recommend reading about its [core concepts](https://docs.dagster.io/concepts) or learning with the hands-on [tutorial](https://docs.dagster.io/tutorial).

Dagster is available on PyPI and officially supports Python 3.7+.

```bash
pip install dagster dagit
```

This installs two modules:

- **Dagster**: The core programming model.
- **Dagit**: The web interface for developing and operating Dagster jobs and assets.

Running on Using a Mac with an M1 or M2 chip? Check the [install details here](https://docs.dagster.io/getting-started/install#installing-dagster-into-an-existing-python-environment).

## Documentation

You can find the full Dagster documentation [here](https://docs.dagster.io), including the ['getting started' guide](https://docs.dagster.io/getting-started).

<hr/>

## Key Features:

  <p align="center">
    <img width="100%" alt="image" src=".github/key-features-cards.svg">
  </p>

### Dagster as a productivity platform
Identify the key assets you need to create using a declarative approach, or you can focus on running basic tasks. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.

### Dagster as a robust orchestration engine
Put your pipelines into production with a robust multi-tenant, multi-tool engine that scales technically and organizationally.

### Dagster as a unified control plane
Maintain control over your data as the complexity scales. Centralize your metadata in one tool with built-in observability, diagnostics, cataloging, and lineage. Spot any issues and identify performance improvement opportunities.

<hr />

## Master the Modern Data Stack with integrations

Dagster provides a growing library of integrations for today’s most popular data tools. Integrate with the tools you already use, and deploy to your infrastructure.

<br/>
<p align="center">
    <a target="_blank" href="https://dagster.io/integrations" style="background:none">
        <img width="100%" alt="image" src=".github/integrations-bar-for-readme.png">
    </a>
</p>

## Community

Connect with thousands of other data practitioners building with Dagster. Share knowledge, get help,
and contribute to the open-source project. To see featured material and upcoming events, check out
our [Dagster Community](https://dagster.io/community) page.

Join our community here:

- 🌟 [Star us on Github](https://github.com/dagster-io/dagster)
- 📥 [Subscribe to our Newsletter](https://dagster.io/newsletter-signup)
- 🐦 [Follow us on Twitter](https://twitter.com/dagster)
- 🕴️ [Follow us on LinkedIn](https://linkedin.com/showcase/dagster)
- 📺 [Subscribe to our YouTube channel](https://www.youtube.com/channel/UCfLnv9X8jyHTe6gJ4hVBo9Q)
- 📚 [Read our blog posts](https://dagster.io/blog)
- 👋 [Join us on Slack](https://dagster.io/slack)
- 🗃 [Browse Slack archives](https://discuss.dagster.io)
- ✏️ [Start a Github Discussion](https://github.com/dagster-io/dagster/discussions)

## Contributing

For details on contributing or running the project for development, check out our [contributing
guide](https://docs.dagster.io/community/contributing/).

## License

Dagster is [Apache 2.0 licensed](https://github.com/dagster-io/dagster/blob/master/LICENSE).


%prep
%autosetup -n dagster-1.2.6

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-dagster -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.6-1
- Package Spec generated