1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
%global _empty_manifest_terminate_build 0
Name: python-dash-bio
Version: 1.0.2
Release: 1
Summary: Dash components for bioinformatics
License: MIT License
URL: http://github.com/plotly/dash-bio
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/7e/eb/5f12d4b0b91974e2457aaf344230010488453edadffb9e5c241eb9f02d34/dash_bio-1.0.2.tar.gz
BuildArch: noarch
%description
# Dash Bio
[](https://circleci.com/gh/plotly/dash-bio)
[](https://badge.fury.io/py/dash-bio)
Dash Bio is a suite of bioinformatics components built to work with
[Dash](https://github.com/plotly/dash/).
Announcement: https://medium.com/@plotlygraphs/announcing-dash-bio-ed8835d5da0c
Demo:
[https://dash-gallery.plotly.host/Portal/?search=Bioinformatics](https://dash-gallery.plotly.host/Portal/?search=Bioinformatics)
Documentation:
[https://dash.plotly.com/dash-bio](https://dash.plotly.com/dash-bio)
## Components
The Dash Bio components each fall into one of three categories:
- Custom chart types
- Sequence analysis tools
- 3D rendering tools
### Custom chart types
- Dash Circos
- Dash Clustergram
- Dash Manhattan Plot
- Dash Needle Plot
- Dash Volcano Plot
### Sequence analysis tools
- Dash Alignment Chart
- Dash Onco Print
- Dash Forna Container
- Dash Sequence Viewer
### Visualization tools
- Dash Mol2D
- Dash Mol3D
- Dash Speck
- Dash Ngl
## Using Dash Bio
It's easy to add a fully interactive chromosomal, molecular or genomic visualization to your Dash app by simply
including the Dash Bio component into your app layout as follows:
```python
import urllib.request as urlreq
from dash import Dash, html
import dash_bio as dashbio
app = Dash(__name__)
data = urlreq.urlopen(
'https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/alignment_viewer_p53.fasta'
).read().decode('utf-8')
app.layout = html.Div([
dashbio.AlignmentChart(
id='my-default-alignment-viewer',
data=data
)
])
if __name__ == '__main__':
app.run_server(debug=True)
```
See the [Dash Bio documentation](https://dash.plotly.com/dash-bio) for more components and examples.
## Run Dash Bio in a JupyterLab environment
1. Create a virtual environment:
The following steps require a virtual environment tool to be installed on your computer: `pip install virtualenv`
a. On macOS and Linux: `python3 -m venv env`
b. On Windows, enter: `py -m venv env`
2. Activate your new environment:
a. On macOS and Linux, enter: `source env/bin/activate`
b. On Windows, enter: `.\env\Scripts\activate`
3. Install required libraries (make sure you have pip installed with `pip help`):
```
pip install dash dash-bio pandas numpy Jupyterlab
```
4. To run Dash inside Jupyter lab:
a. Install jupyter-dash: `pip install jupyter-dash`
b. Enter `jupyter lab build`
(Note: This step requires Node.js and NPM installed on yourcomputer. To check if Node and NPM are installed, enter `node -v` and `npm -v` in your terminal. For install instructions see [nodejs.org](https://nodejs.org/en/).
5. To display Plotly figures in JupyterLab:
```
pip install jupyterlab "ipywidgets>=7.5”
jupyter labextension install jupyterlab-plotly@4.14.3
```
6. Start JupyterLab by typing: `jupyter lab`
Important: JupyterLab must be run within the virtual environment that was previously activated.
For more on running a Dash app in Jupyter Lab visit [Getting Started with Jupyter Dash](https://github.com/plotly/jupyter-dash/blob/master/notebooks/getting_started.ipynb).
## Dash
Learn more about Dash at
[https://plotly.com/products/dash/](https://plotly.com/products/dash/).
## Consulting and OEM
For inquiries about Dash app development, advanced OEM integration,
and more, please [reach
out](https://plotly.typeform.com/to/mH1Cpb).
## Contributing and Local Development
If you would like to contribute to this repository, or run demo apps and tests, please refer to
the [contributing
guidelines](https://github.com/plotly/dash-bio/blob/master/CONTRIBUTING.md).
%package -n python3-dash-bio
Summary: Dash components for bioinformatics
Provides: python-dash-bio
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dash-bio
# Dash Bio
[](https://circleci.com/gh/plotly/dash-bio)
[](https://badge.fury.io/py/dash-bio)
Dash Bio is a suite of bioinformatics components built to work with
[Dash](https://github.com/plotly/dash/).
Announcement: https://medium.com/@plotlygraphs/announcing-dash-bio-ed8835d5da0c
Demo:
[https://dash-gallery.plotly.host/Portal/?search=Bioinformatics](https://dash-gallery.plotly.host/Portal/?search=Bioinformatics)
Documentation:
[https://dash.plotly.com/dash-bio](https://dash.plotly.com/dash-bio)
## Components
The Dash Bio components each fall into one of three categories:
- Custom chart types
- Sequence analysis tools
- 3D rendering tools
### Custom chart types
- Dash Circos
- Dash Clustergram
- Dash Manhattan Plot
- Dash Needle Plot
- Dash Volcano Plot
### Sequence analysis tools
- Dash Alignment Chart
- Dash Onco Print
- Dash Forna Container
- Dash Sequence Viewer
### Visualization tools
- Dash Mol2D
- Dash Mol3D
- Dash Speck
- Dash Ngl
## Using Dash Bio
It's easy to add a fully interactive chromosomal, molecular or genomic visualization to your Dash app by simply
including the Dash Bio component into your app layout as follows:
```python
import urllib.request as urlreq
from dash import Dash, html
import dash_bio as dashbio
app = Dash(__name__)
data = urlreq.urlopen(
'https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/alignment_viewer_p53.fasta'
).read().decode('utf-8')
app.layout = html.Div([
dashbio.AlignmentChart(
id='my-default-alignment-viewer',
data=data
)
])
if __name__ == '__main__':
app.run_server(debug=True)
```
See the [Dash Bio documentation](https://dash.plotly.com/dash-bio) for more components and examples.
## Run Dash Bio in a JupyterLab environment
1. Create a virtual environment:
The following steps require a virtual environment tool to be installed on your computer: `pip install virtualenv`
a. On macOS and Linux: `python3 -m venv env`
b. On Windows, enter: `py -m venv env`
2. Activate your new environment:
a. On macOS and Linux, enter: `source env/bin/activate`
b. On Windows, enter: `.\env\Scripts\activate`
3. Install required libraries (make sure you have pip installed with `pip help`):
```
pip install dash dash-bio pandas numpy Jupyterlab
```
4. To run Dash inside Jupyter lab:
a. Install jupyter-dash: `pip install jupyter-dash`
b. Enter `jupyter lab build`
(Note: This step requires Node.js and NPM installed on yourcomputer. To check if Node and NPM are installed, enter `node -v` and `npm -v` in your terminal. For install instructions see [nodejs.org](https://nodejs.org/en/).
5. To display Plotly figures in JupyterLab:
```
pip install jupyterlab "ipywidgets>=7.5”
jupyter labextension install jupyterlab-plotly@4.14.3
```
6. Start JupyterLab by typing: `jupyter lab`
Important: JupyterLab must be run within the virtual environment that was previously activated.
For more on running a Dash app in Jupyter Lab visit [Getting Started with Jupyter Dash](https://github.com/plotly/jupyter-dash/blob/master/notebooks/getting_started.ipynb).
## Dash
Learn more about Dash at
[https://plotly.com/products/dash/](https://plotly.com/products/dash/).
## Consulting and OEM
For inquiries about Dash app development, advanced OEM integration,
and more, please [reach
out](https://plotly.typeform.com/to/mH1Cpb).
## Contributing and Local Development
If you would like to contribute to this repository, or run demo apps and tests, please refer to
the [contributing
guidelines](https://github.com/plotly/dash-bio/blob/master/CONTRIBUTING.md).
%package help
Summary: Development documents and examples for dash-bio
Provides: python3-dash-bio-doc
%description help
# Dash Bio
[](https://circleci.com/gh/plotly/dash-bio)
[](https://badge.fury.io/py/dash-bio)
Dash Bio is a suite of bioinformatics components built to work with
[Dash](https://github.com/plotly/dash/).
Announcement: https://medium.com/@plotlygraphs/announcing-dash-bio-ed8835d5da0c
Demo:
[https://dash-gallery.plotly.host/Portal/?search=Bioinformatics](https://dash-gallery.plotly.host/Portal/?search=Bioinformatics)
Documentation:
[https://dash.plotly.com/dash-bio](https://dash.plotly.com/dash-bio)
## Components
The Dash Bio components each fall into one of three categories:
- Custom chart types
- Sequence analysis tools
- 3D rendering tools
### Custom chart types
- Dash Circos
- Dash Clustergram
- Dash Manhattan Plot
- Dash Needle Plot
- Dash Volcano Plot
### Sequence analysis tools
- Dash Alignment Chart
- Dash Onco Print
- Dash Forna Container
- Dash Sequence Viewer
### Visualization tools
- Dash Mol2D
- Dash Mol3D
- Dash Speck
- Dash Ngl
## Using Dash Bio
It's easy to add a fully interactive chromosomal, molecular or genomic visualization to your Dash app by simply
including the Dash Bio component into your app layout as follows:
```python
import urllib.request as urlreq
from dash import Dash, html
import dash_bio as dashbio
app = Dash(__name__)
data = urlreq.urlopen(
'https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/alignment_viewer_p53.fasta'
).read().decode('utf-8')
app.layout = html.Div([
dashbio.AlignmentChart(
id='my-default-alignment-viewer',
data=data
)
])
if __name__ == '__main__':
app.run_server(debug=True)
```
See the [Dash Bio documentation](https://dash.plotly.com/dash-bio) for more components and examples.
## Run Dash Bio in a JupyterLab environment
1. Create a virtual environment:
The following steps require a virtual environment tool to be installed on your computer: `pip install virtualenv`
a. On macOS and Linux: `python3 -m venv env`
b. On Windows, enter: `py -m venv env`
2. Activate your new environment:
a. On macOS and Linux, enter: `source env/bin/activate`
b. On Windows, enter: `.\env\Scripts\activate`
3. Install required libraries (make sure you have pip installed with `pip help`):
```
pip install dash dash-bio pandas numpy Jupyterlab
```
4. To run Dash inside Jupyter lab:
a. Install jupyter-dash: `pip install jupyter-dash`
b. Enter `jupyter lab build`
(Note: This step requires Node.js and NPM installed on yourcomputer. To check if Node and NPM are installed, enter `node -v` and `npm -v` in your terminal. For install instructions see [nodejs.org](https://nodejs.org/en/).
5. To display Plotly figures in JupyterLab:
```
pip install jupyterlab "ipywidgets>=7.5”
jupyter labextension install jupyterlab-plotly@4.14.3
```
6. Start JupyterLab by typing: `jupyter lab`
Important: JupyterLab must be run within the virtual environment that was previously activated.
For more on running a Dash app in Jupyter Lab visit [Getting Started with Jupyter Dash](https://github.com/plotly/jupyter-dash/blob/master/notebooks/getting_started.ipynb).
## Dash
Learn more about Dash at
[https://plotly.com/products/dash/](https://plotly.com/products/dash/).
## Consulting and OEM
For inquiries about Dash app development, advanced OEM integration,
and more, please [reach
out](https://plotly.typeform.com/to/mH1Cpb).
## Contributing and Local Development
If you would like to contribute to this repository, or run demo apps and tests, please refer to
the [contributing
guidelines](https://github.com/plotly/dash-bio/blob/master/CONTRIBUTING.md).
%prep
%autosetup -n dash-bio-1.0.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dash-bio -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.2-1
- Package Spec generated
|