1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
|
%global _empty_manifest_terminate_build 0
Name: python-Data-Generator
Version: 1.0.1
Release: 1
Summary: Random Data Generator
License: MIT License
URL: https://github.com/bednaJedna/data_generator
Source0: https://mirrors.aliyun.com/pypi/web/packages/4b/61/3eefa1c8dbe56934d34978c79caca71f7260bb646b6dbb5073d700e1ea35/Data%20Generator-1.0.1.tar.gz
BuildArch: noarch
Requires: python3-tqdm
Requires: python3-XlsxWriter
Requires: python3-tomlkit
Requires: python3-pytest
%description
# Data Generator


## Table of Contents
- [About](#about)
- [Getting Started](#getting_started)
- [Usage](#usage)
- [Changelog](changelog.md)
## About <a name = "about"></a>
Random Data Generator.
Create dataset with random data of datatypes int, float, str, date (more precisely python's datetime.datetime) and timestamp (as float).
Data can be exported to .csv, .xlsx or .json files.
Data are created using CLI commands or via TOML file specification.
## Getting Started <a name = "getting_started"></a>
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.
### Prerequisites
What things you need to install the software and how to install them.
- Python 3.8+ with pip
### Installing
- just use `[sudo] pip[3] install Data-Generator`
OR:
- clone this repo
- switch to project directory root
- run `[sudo] python3 setup.py install`
## Usage <a name = "usage"></a>
- data parameters can be provided via:
- command line
- TOML file
- currently, these Python's datatypes are supported: **int, str, float, datetime.datetime**
- generated data can be exported as **.csv, .xlsx or .json** files
- using .csv file format does not impact memory, since data is written in the file as they are generated
- using .xlsx file format does not impact memory, since memory is flushed after each row of data is written. For details, see xlsxwriter's <a href="https://xlsxwriter.readthedocs.io/working_with_memory.html">documentation</a>
- using .json file format has a memory impact, so be careful about that - this is given by Python's json module implementation, see Note <a href="https://docs.python.org/3/library/json.html#json.dump">HERE</a>. Data has to be firstly completely generated in memory and then written into the file
### OS differences
- there should be no problems running this utility on standard linux distro or on Windows 10
- only difference is:
- on linux, use _python3_ command
- on Windows 10, use _python_ command
### CLI syntax
#### General CLI commands
- to display help for main parser in console, run `python[3] -m data_generator -h`
- to display help for **data** parser (when entering specifications via CLI), run `python[3] -m data_generator data -h`
- to display help for **toml** parser (when entering specifications via TOML file), run `python[3] -m data_generator toml -h`
#### Specify output file format
- use optional parameter _-sa_ or _--save_as_
- this parameter belongs to main parser and has to be used before _data_ subparser arguments
- do not use this parameter together with toml subparser - all parameters are provided via .toml configuration file
- if this parameter is not specified, default output file format is .csv
- parameter's values:
- csv: csv
- json: json
- xlsx: xlsx
- example: `python[3] -m data_generator -sa json data ...`
#### Specify output destination
- use optional parameter _-f_ or _--folder_
- this parameter belongs to main parser and has to be used before _data_ subparser arguments
- do not use this parameter together with toml subparser - all parameters are provided via .toml configuration file
- example: `python[3] -m data_generator -f my_output_folder ...`
#### Data parser
- to specify integers:
- `<column_name>:int:<lower_bound>:<upper_bound>` - lower_bound can be negative
- to specify floats:
- `<column_name>:float:<lower_bound>:<upper_bound>` - lower_bound can be negative. You must provide decimal digit, even if it is zero, like so: xxx.0
- to specify str:
- `<column_name>:str:<lower_bound>:<upper_bound>` - lower_bound cannot be negative.
- to specify date:
- `<column_name>:date:<format_template>`
- under the hood, generator works with Python's native datetime module. That means, that all datetime format codes listed <a href = "https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes">HERE</a> should be suppported.
- as of now, **\_ and -** are permitted as separators
- for example, format template can look like this: _%Y%m%d\_%H%M%S_. This will display generated random date in format "yyyymmdd_hhmmss".
- minimum year is 1, maximum year is 9999. See <a href = "https://docs.python.org/3/library/datetime.html#constants">documentation</a>.
- to specify timestamp:
- `<column_name>:timestamp:`
- generator will generate datetime.datetime object of random date, with minimum year of 1970 and from it returns corresponding POSIX timestamp as float. For details see <a href="https://docs.python.org/3/library/datetime.html#datetime.datetime.timestamp">documentation</a>
##### Formatting checks
Basic check is done after CLI command is entered, whether argument values for data parser conforms to the syntax described above. It is not exhaustive, but should stop you from the major typos like forgetting the :, or .0, etc...
##### CLI examples for Data parser:
- `python3 -m data_generator data column1:str:0:50 column2:str:101:101 column3:int:10:10 column4:int:0:1000 column5:float:0.0:1000.0 1000`
- this will generate .csv file with 1000 rows of five columns with random data. First columns is of datatype str, it is str with variable length between 0 - 50 chars. Second column is str with fixed lenght of 101 chars. Third columns is int of the SAME VALUE of 10. Fourth column is int of variable size between 0 - 1000. Fifth column is float of variable size between 0.0 - 1000.0.
- 1000 - indicates how many rows will be generated
- generated .csv file is saved into default _output_ folder. This can be changed using _-f_ or _--folder_ parameter
- `python3 -m data_generator -f my_output_folder/subfolder data header_with_underscore:str:10:10 100`
- this will generate one "column" of random str data of fixed 10 chars lenght with 100 rows into the target folder of your choice. If the folder does not exist, it will be created
- notice, that you can use \_ separator in the header names. Other separators like - are not permitted.
- `python3 -m data_generator data data_with_negative_int:int:-1000:1000 data_with_negative_float:float:-100000.0:0.0 10000`
- this will generate 10 rows of data with integer in the interval <-1000, 1000> and float in the inteval <-100000.0, 0.0>
- `python3 -m data_generator data random_dates_without_separators:date:%Y%m%d%H%M%S random_dates_with_separators:date:%Y-%m-%d_%H-%M-%S 10`
- generates two columns of random dates with and without using the allowed separators
- `python3 -m data_generator -sa json data data_with_negative_int:int:-1000:1000 data_with_negative_float:float:-100000.0:0.0 10000`
- this will generate data as .json file
#### TOML parser
- when you want to generate datafile with lots of fields, or event multiple files with different specs, it may be useful to be able to specify properties of fields permanently.
- in this case, you can use configuration files, which use <a href="https://github.com/toml-lang/toml">TOML syntax</a>. Two example files can be found in the root of this project. Just copy & paste and add as many fields as you like.
- files can be saved anywhere, just have the path ready
##### CLI examples for TOML parser
- `python[3] -m data_generator toml data_config_example01.toml data_config_example02.toml`
- this will generate two outputs files according to specifications in these two .TOML files.
- `python[3] -m data_generator toml /custom/path/to/data_config_example01.toml`
- this will generate one output via specification file in custom location
%package -n python3-Data-Generator
Summary: Random Data Generator
Provides: python-Data-Generator
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-Data-Generator
# Data Generator


## Table of Contents
- [About](#about)
- [Getting Started](#getting_started)
- [Usage](#usage)
- [Changelog](changelog.md)
## About <a name = "about"></a>
Random Data Generator.
Create dataset with random data of datatypes int, float, str, date (more precisely python's datetime.datetime) and timestamp (as float).
Data can be exported to .csv, .xlsx or .json files.
Data are created using CLI commands or via TOML file specification.
## Getting Started <a name = "getting_started"></a>
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.
### Prerequisites
What things you need to install the software and how to install them.
- Python 3.8+ with pip
### Installing
- just use `[sudo] pip[3] install Data-Generator`
OR:
- clone this repo
- switch to project directory root
- run `[sudo] python3 setup.py install`
## Usage <a name = "usage"></a>
- data parameters can be provided via:
- command line
- TOML file
- currently, these Python's datatypes are supported: **int, str, float, datetime.datetime**
- generated data can be exported as **.csv, .xlsx or .json** files
- using .csv file format does not impact memory, since data is written in the file as they are generated
- using .xlsx file format does not impact memory, since memory is flushed after each row of data is written. For details, see xlsxwriter's <a href="https://xlsxwriter.readthedocs.io/working_with_memory.html">documentation</a>
- using .json file format has a memory impact, so be careful about that - this is given by Python's json module implementation, see Note <a href="https://docs.python.org/3/library/json.html#json.dump">HERE</a>. Data has to be firstly completely generated in memory and then written into the file
### OS differences
- there should be no problems running this utility on standard linux distro or on Windows 10
- only difference is:
- on linux, use _python3_ command
- on Windows 10, use _python_ command
### CLI syntax
#### General CLI commands
- to display help for main parser in console, run `python[3] -m data_generator -h`
- to display help for **data** parser (when entering specifications via CLI), run `python[3] -m data_generator data -h`
- to display help for **toml** parser (when entering specifications via TOML file), run `python[3] -m data_generator toml -h`
#### Specify output file format
- use optional parameter _-sa_ or _--save_as_
- this parameter belongs to main parser and has to be used before _data_ subparser arguments
- do not use this parameter together with toml subparser - all parameters are provided via .toml configuration file
- if this parameter is not specified, default output file format is .csv
- parameter's values:
- csv: csv
- json: json
- xlsx: xlsx
- example: `python[3] -m data_generator -sa json data ...`
#### Specify output destination
- use optional parameter _-f_ or _--folder_
- this parameter belongs to main parser and has to be used before _data_ subparser arguments
- do not use this parameter together with toml subparser - all parameters are provided via .toml configuration file
- example: `python[3] -m data_generator -f my_output_folder ...`
#### Data parser
- to specify integers:
- `<column_name>:int:<lower_bound>:<upper_bound>` - lower_bound can be negative
- to specify floats:
- `<column_name>:float:<lower_bound>:<upper_bound>` - lower_bound can be negative. You must provide decimal digit, even if it is zero, like so: xxx.0
- to specify str:
- `<column_name>:str:<lower_bound>:<upper_bound>` - lower_bound cannot be negative.
- to specify date:
- `<column_name>:date:<format_template>`
- under the hood, generator works with Python's native datetime module. That means, that all datetime format codes listed <a href = "https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes">HERE</a> should be suppported.
- as of now, **\_ and -** are permitted as separators
- for example, format template can look like this: _%Y%m%d\_%H%M%S_. This will display generated random date in format "yyyymmdd_hhmmss".
- minimum year is 1, maximum year is 9999. See <a href = "https://docs.python.org/3/library/datetime.html#constants">documentation</a>.
- to specify timestamp:
- `<column_name>:timestamp:`
- generator will generate datetime.datetime object of random date, with minimum year of 1970 and from it returns corresponding POSIX timestamp as float. For details see <a href="https://docs.python.org/3/library/datetime.html#datetime.datetime.timestamp">documentation</a>
##### Formatting checks
Basic check is done after CLI command is entered, whether argument values for data parser conforms to the syntax described above. It is not exhaustive, but should stop you from the major typos like forgetting the :, or .0, etc...
##### CLI examples for Data parser:
- `python3 -m data_generator data column1:str:0:50 column2:str:101:101 column3:int:10:10 column4:int:0:1000 column5:float:0.0:1000.0 1000`
- this will generate .csv file with 1000 rows of five columns with random data. First columns is of datatype str, it is str with variable length between 0 - 50 chars. Second column is str with fixed lenght of 101 chars. Third columns is int of the SAME VALUE of 10. Fourth column is int of variable size between 0 - 1000. Fifth column is float of variable size between 0.0 - 1000.0.
- 1000 - indicates how many rows will be generated
- generated .csv file is saved into default _output_ folder. This can be changed using _-f_ or _--folder_ parameter
- `python3 -m data_generator -f my_output_folder/subfolder data header_with_underscore:str:10:10 100`
- this will generate one "column" of random str data of fixed 10 chars lenght with 100 rows into the target folder of your choice. If the folder does not exist, it will be created
- notice, that you can use \_ separator in the header names. Other separators like - are not permitted.
- `python3 -m data_generator data data_with_negative_int:int:-1000:1000 data_with_negative_float:float:-100000.0:0.0 10000`
- this will generate 10 rows of data with integer in the interval <-1000, 1000> and float in the inteval <-100000.0, 0.0>
- `python3 -m data_generator data random_dates_without_separators:date:%Y%m%d%H%M%S random_dates_with_separators:date:%Y-%m-%d_%H-%M-%S 10`
- generates two columns of random dates with and without using the allowed separators
- `python3 -m data_generator -sa json data data_with_negative_int:int:-1000:1000 data_with_negative_float:float:-100000.0:0.0 10000`
- this will generate data as .json file
#### TOML parser
- when you want to generate datafile with lots of fields, or event multiple files with different specs, it may be useful to be able to specify properties of fields permanently.
- in this case, you can use configuration files, which use <a href="https://github.com/toml-lang/toml">TOML syntax</a>. Two example files can be found in the root of this project. Just copy & paste and add as many fields as you like.
- files can be saved anywhere, just have the path ready
##### CLI examples for TOML parser
- `python[3] -m data_generator toml data_config_example01.toml data_config_example02.toml`
- this will generate two outputs files according to specifications in these two .TOML files.
- `python[3] -m data_generator toml /custom/path/to/data_config_example01.toml`
- this will generate one output via specification file in custom location
%package help
Summary: Development documents and examples for Data-Generator
Provides: python3-Data-Generator-doc
%description help
# Data Generator


## Table of Contents
- [About](#about)
- [Getting Started](#getting_started)
- [Usage](#usage)
- [Changelog](changelog.md)
## About <a name = "about"></a>
Random Data Generator.
Create dataset with random data of datatypes int, float, str, date (more precisely python's datetime.datetime) and timestamp (as float).
Data can be exported to .csv, .xlsx or .json files.
Data are created using CLI commands or via TOML file specification.
## Getting Started <a name = "getting_started"></a>
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.
### Prerequisites
What things you need to install the software and how to install them.
- Python 3.8+ with pip
### Installing
- just use `[sudo] pip[3] install Data-Generator`
OR:
- clone this repo
- switch to project directory root
- run `[sudo] python3 setup.py install`
## Usage <a name = "usage"></a>
- data parameters can be provided via:
- command line
- TOML file
- currently, these Python's datatypes are supported: **int, str, float, datetime.datetime**
- generated data can be exported as **.csv, .xlsx or .json** files
- using .csv file format does not impact memory, since data is written in the file as they are generated
- using .xlsx file format does not impact memory, since memory is flushed after each row of data is written. For details, see xlsxwriter's <a href="https://xlsxwriter.readthedocs.io/working_with_memory.html">documentation</a>
- using .json file format has a memory impact, so be careful about that - this is given by Python's json module implementation, see Note <a href="https://docs.python.org/3/library/json.html#json.dump">HERE</a>. Data has to be firstly completely generated in memory and then written into the file
### OS differences
- there should be no problems running this utility on standard linux distro or on Windows 10
- only difference is:
- on linux, use _python3_ command
- on Windows 10, use _python_ command
### CLI syntax
#### General CLI commands
- to display help for main parser in console, run `python[3] -m data_generator -h`
- to display help for **data** parser (when entering specifications via CLI), run `python[3] -m data_generator data -h`
- to display help for **toml** parser (when entering specifications via TOML file), run `python[3] -m data_generator toml -h`
#### Specify output file format
- use optional parameter _-sa_ or _--save_as_
- this parameter belongs to main parser and has to be used before _data_ subparser arguments
- do not use this parameter together with toml subparser - all parameters are provided via .toml configuration file
- if this parameter is not specified, default output file format is .csv
- parameter's values:
- csv: csv
- json: json
- xlsx: xlsx
- example: `python[3] -m data_generator -sa json data ...`
#### Specify output destination
- use optional parameter _-f_ or _--folder_
- this parameter belongs to main parser and has to be used before _data_ subparser arguments
- do not use this parameter together with toml subparser - all parameters are provided via .toml configuration file
- example: `python[3] -m data_generator -f my_output_folder ...`
#### Data parser
- to specify integers:
- `<column_name>:int:<lower_bound>:<upper_bound>` - lower_bound can be negative
- to specify floats:
- `<column_name>:float:<lower_bound>:<upper_bound>` - lower_bound can be negative. You must provide decimal digit, even if it is zero, like so: xxx.0
- to specify str:
- `<column_name>:str:<lower_bound>:<upper_bound>` - lower_bound cannot be negative.
- to specify date:
- `<column_name>:date:<format_template>`
- under the hood, generator works with Python's native datetime module. That means, that all datetime format codes listed <a href = "https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes">HERE</a> should be suppported.
- as of now, **\_ and -** are permitted as separators
- for example, format template can look like this: _%Y%m%d\_%H%M%S_. This will display generated random date in format "yyyymmdd_hhmmss".
- minimum year is 1, maximum year is 9999. See <a href = "https://docs.python.org/3/library/datetime.html#constants">documentation</a>.
- to specify timestamp:
- `<column_name>:timestamp:`
- generator will generate datetime.datetime object of random date, with minimum year of 1970 and from it returns corresponding POSIX timestamp as float. For details see <a href="https://docs.python.org/3/library/datetime.html#datetime.datetime.timestamp">documentation</a>
##### Formatting checks
Basic check is done after CLI command is entered, whether argument values for data parser conforms to the syntax described above. It is not exhaustive, but should stop you from the major typos like forgetting the :, or .0, etc...
##### CLI examples for Data parser:
- `python3 -m data_generator data column1:str:0:50 column2:str:101:101 column3:int:10:10 column4:int:0:1000 column5:float:0.0:1000.0 1000`
- this will generate .csv file with 1000 rows of five columns with random data. First columns is of datatype str, it is str with variable length between 0 - 50 chars. Second column is str with fixed lenght of 101 chars. Third columns is int of the SAME VALUE of 10. Fourth column is int of variable size between 0 - 1000. Fifth column is float of variable size between 0.0 - 1000.0.
- 1000 - indicates how many rows will be generated
- generated .csv file is saved into default _output_ folder. This can be changed using _-f_ or _--folder_ parameter
- `python3 -m data_generator -f my_output_folder/subfolder data header_with_underscore:str:10:10 100`
- this will generate one "column" of random str data of fixed 10 chars lenght with 100 rows into the target folder of your choice. If the folder does not exist, it will be created
- notice, that you can use \_ separator in the header names. Other separators like - are not permitted.
- `python3 -m data_generator data data_with_negative_int:int:-1000:1000 data_with_negative_float:float:-100000.0:0.0 10000`
- this will generate 10 rows of data with integer in the interval <-1000, 1000> and float in the inteval <-100000.0, 0.0>
- `python3 -m data_generator data random_dates_without_separators:date:%Y%m%d%H%M%S random_dates_with_separators:date:%Y-%m-%d_%H-%M-%S 10`
- generates two columns of random dates with and without using the allowed separators
- `python3 -m data_generator -sa json data data_with_negative_int:int:-1000:1000 data_with_negative_float:float:-100000.0:0.0 10000`
- this will generate data as .json file
#### TOML parser
- when you want to generate datafile with lots of fields, or event multiple files with different specs, it may be useful to be able to specify properties of fields permanently.
- in this case, you can use configuration files, which use <a href="https://github.com/toml-lang/toml">TOML syntax</a>. Two example files can be found in the root of this project. Just copy & paste and add as many fields as you like.
- files can be saved anywhere, just have the path ready
##### CLI examples for TOML parser
- `python[3] -m data_generator toml data_config_example01.toml data_config_example02.toml`
- this will generate two outputs files according to specifications in these two .TOML files.
- `python[3] -m data_generator toml /custom/path/to/data_config_example01.toml`
- this will generate one output via specification file in custom location
%prep
%autosetup -n Data Generator-1.0.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-Data-Generator -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.1-1
- Package Spec generated
|