1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
|
%global _empty_manifest_terminate_build 0
Name: python-datawig
Version: 0.2.0
Release: 1
Summary: Imputation for tables with missing values
License: Apache License 2.0
URL: https://github.com/awslabs/datawig
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ad/a9/855c39f27e07c5727fede305f2dc4ce04137f974b5b07c7da8f7b13a72dc/datawig-0.2.0.tar.gz
BuildArch: noarch
%description
[](https://badge.fury.io/py/datawig.svg)
[](https://github.com/awslabs/datawig/blob/master/LICENSE)
[](https://github.com/awslabs/datawig/issues)
[](https://travis-ci.org/awslabs/datawig)
DataWig learns Machine Learning models to impute missing values in tables.
See our user-guide and extended documentation [here](https://datawig.readthedocs.io/en/latest).
## Installation
### CPU
```bash
pip3 install datawig
```
### GPU
If you want to run DataWig on a GPU you need to make sure your version of Apache MXNet Incubating contains the GPU bindings.
Depending on your version of CUDA, you can do this by running the following:
```bash
wget https://raw.githubusercontent.com/awslabs/datawig/master/requirements/requirements.gpu-cu${CUDA_VERSION}.txt
pip install datawig --no-deps -r requirements.gpu-cu${CUDA_VERSION}.txt
rm requirements.gpu-cu${CUDA_VERSION}.txt
```
where `${CUDA_VERSION}` can be `75` (7.5), `80` (8.0), `90` (9.0), or `91` (9.1).
## Running DataWig
The DataWig API expects your data as a [pandas DataFrame](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html). Here is an example of how the dataframe might look:
|Product Type | Description | Size | Color |
|-------------|-----------------------|------|-------|
| Shoe | Ideal for Running | 12UK | Black |
| SDCards | Best SDCard ever ... | 8GB | Blue |
| Dress | This **yellow** dress | M | **?** |
### Quickstart Example
For most use cases, the `SimpleImputer` class is the best starting point. For convenience there is the function [SimpleImputer.complete](https://datawig.readthedocs.io/en/latest/source/API.html#datawig.simple_imputer.SimpleImputer.complete) that takes a DataFrame and fits an imputation model for each column with missing values, with all other columns as inputs:
```python
import datawig, numpy
# generate some data with simple nonlinear dependency
df = datawig.utils.generate_df_numeric()
# mask 10% of the values
df_with_missing = df.mask(numpy.random.rand(*df.shape) > .9)
# impute missing values
df_with_missing_imputed = datawig.SimpleImputer.complete(df_with_missing)
```
You can also impute values in specific columns only (called `output_column` below) using values in other columns (called `input_columns` below). DataWig currently supports imputation of categorical columns and numeric columns.
### Imputation of categorical columns
```python
import datawig
df = datawig.utils.generate_df_string( num_samples=200,
data_column_name='sentences',
label_column_name='label')
df_train, df_test = datawig.utils.random_split(df)
#Initialize a SimpleImputer model
imputer = datawig.SimpleImputer(
input_columns=['sentences'], # column(s) containing information about the column we want to impute
output_column='label', # the column we'd like to impute values for
output_path = 'imputer_model' # stores model data and metrics
)
#Fit an imputer model on the train data
imputer.fit(train_df=df_train)
#Impute missing values and return original dataframe with predictions
imputed = imputer.predict(df_test)
```
### Imputation of numerical columns
```python
import datawig
df = datawig.utils.generate_df_numeric( num_samples=200,
data_column_name='x',
label_column_name='y')
df_train, df_test = datawig.utils.random_split(df)
#Initialize a SimpleImputer model
imputer = datawig.SimpleImputer(
input_columns=['x'], # column(s) containing information about the column we want to impute
output_column='y', # the column we'd like to impute values for
output_path = 'imputer_model' # stores model data and metrics
)
#Fit an imputer model on the train data
imputer.fit(train_df=df_train, num_epochs=50)
#Impute missing values and return original dataframe with predictions
imputed = imputer.predict(df_test)
```
In order to have more control over the types of models and preprocessings, the `Imputer` class allows directly specifying all relevant model features and parameters.
For details on usage, refer to the provided [examples](./examples).
### Acknowledgments
Thanks to [David Greenberg](https://github.com/dgreenberg) for the package name.
### Building documentation
```bash
git clone git@github.com:awslabs/datawig.git
cd datawig/docs
make html
open _build/html/index.html
```
### Executing Tests
Clone the repository from git and set up virtualenv in the root dir of the package:
```
python3 -m venv venv
```
Install the package from local sources:
```
./venv/bin/pip install -e .
```
Run tests:
```
./venv/bin/pip install -r requirements/requirements.dev.txt
./venv/bin/python -m pytest
```
### Updating PyPi distribution
Before updating, increment the version in setup.py.
```
git clone git@github.com:awslabs/datawig.git
cd datawig
# build local distribution for current version
python setup.py sdist
# upload to PyPi
twine upload --skip-existing dist/*
```
%package -n python3-datawig
Summary: Imputation for tables with missing values
Provides: python-datawig
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-datawig
[](https://badge.fury.io/py/datawig.svg)
[](https://github.com/awslabs/datawig/blob/master/LICENSE)
[](https://github.com/awslabs/datawig/issues)
[](https://travis-ci.org/awslabs/datawig)
DataWig learns Machine Learning models to impute missing values in tables.
See our user-guide and extended documentation [here](https://datawig.readthedocs.io/en/latest).
## Installation
### CPU
```bash
pip3 install datawig
```
### GPU
If you want to run DataWig on a GPU you need to make sure your version of Apache MXNet Incubating contains the GPU bindings.
Depending on your version of CUDA, you can do this by running the following:
```bash
wget https://raw.githubusercontent.com/awslabs/datawig/master/requirements/requirements.gpu-cu${CUDA_VERSION}.txt
pip install datawig --no-deps -r requirements.gpu-cu${CUDA_VERSION}.txt
rm requirements.gpu-cu${CUDA_VERSION}.txt
```
where `${CUDA_VERSION}` can be `75` (7.5), `80` (8.0), `90` (9.0), or `91` (9.1).
## Running DataWig
The DataWig API expects your data as a [pandas DataFrame](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html). Here is an example of how the dataframe might look:
|Product Type | Description | Size | Color |
|-------------|-----------------------|------|-------|
| Shoe | Ideal for Running | 12UK | Black |
| SDCards | Best SDCard ever ... | 8GB | Blue |
| Dress | This **yellow** dress | M | **?** |
### Quickstart Example
For most use cases, the `SimpleImputer` class is the best starting point. For convenience there is the function [SimpleImputer.complete](https://datawig.readthedocs.io/en/latest/source/API.html#datawig.simple_imputer.SimpleImputer.complete) that takes a DataFrame and fits an imputation model for each column with missing values, with all other columns as inputs:
```python
import datawig, numpy
# generate some data with simple nonlinear dependency
df = datawig.utils.generate_df_numeric()
# mask 10% of the values
df_with_missing = df.mask(numpy.random.rand(*df.shape) > .9)
# impute missing values
df_with_missing_imputed = datawig.SimpleImputer.complete(df_with_missing)
```
You can also impute values in specific columns only (called `output_column` below) using values in other columns (called `input_columns` below). DataWig currently supports imputation of categorical columns and numeric columns.
### Imputation of categorical columns
```python
import datawig
df = datawig.utils.generate_df_string( num_samples=200,
data_column_name='sentences',
label_column_name='label')
df_train, df_test = datawig.utils.random_split(df)
#Initialize a SimpleImputer model
imputer = datawig.SimpleImputer(
input_columns=['sentences'], # column(s) containing information about the column we want to impute
output_column='label', # the column we'd like to impute values for
output_path = 'imputer_model' # stores model data and metrics
)
#Fit an imputer model on the train data
imputer.fit(train_df=df_train)
#Impute missing values and return original dataframe with predictions
imputed = imputer.predict(df_test)
```
### Imputation of numerical columns
```python
import datawig
df = datawig.utils.generate_df_numeric( num_samples=200,
data_column_name='x',
label_column_name='y')
df_train, df_test = datawig.utils.random_split(df)
#Initialize a SimpleImputer model
imputer = datawig.SimpleImputer(
input_columns=['x'], # column(s) containing information about the column we want to impute
output_column='y', # the column we'd like to impute values for
output_path = 'imputer_model' # stores model data and metrics
)
#Fit an imputer model on the train data
imputer.fit(train_df=df_train, num_epochs=50)
#Impute missing values and return original dataframe with predictions
imputed = imputer.predict(df_test)
```
In order to have more control over the types of models and preprocessings, the `Imputer` class allows directly specifying all relevant model features and parameters.
For details on usage, refer to the provided [examples](./examples).
### Acknowledgments
Thanks to [David Greenberg](https://github.com/dgreenberg) for the package name.
### Building documentation
```bash
git clone git@github.com:awslabs/datawig.git
cd datawig/docs
make html
open _build/html/index.html
```
### Executing Tests
Clone the repository from git and set up virtualenv in the root dir of the package:
```
python3 -m venv venv
```
Install the package from local sources:
```
./venv/bin/pip install -e .
```
Run tests:
```
./venv/bin/pip install -r requirements/requirements.dev.txt
./venv/bin/python -m pytest
```
### Updating PyPi distribution
Before updating, increment the version in setup.py.
```
git clone git@github.com:awslabs/datawig.git
cd datawig
# build local distribution for current version
python setup.py sdist
# upload to PyPi
twine upload --skip-existing dist/*
```
%package help
Summary: Development documents and examples for datawig
Provides: python3-datawig-doc
%description help
[](https://badge.fury.io/py/datawig.svg)
[](https://github.com/awslabs/datawig/blob/master/LICENSE)
[](https://github.com/awslabs/datawig/issues)
[](https://travis-ci.org/awslabs/datawig)
DataWig learns Machine Learning models to impute missing values in tables.
See our user-guide and extended documentation [here](https://datawig.readthedocs.io/en/latest).
## Installation
### CPU
```bash
pip3 install datawig
```
### GPU
If you want to run DataWig on a GPU you need to make sure your version of Apache MXNet Incubating contains the GPU bindings.
Depending on your version of CUDA, you can do this by running the following:
```bash
wget https://raw.githubusercontent.com/awslabs/datawig/master/requirements/requirements.gpu-cu${CUDA_VERSION}.txt
pip install datawig --no-deps -r requirements.gpu-cu${CUDA_VERSION}.txt
rm requirements.gpu-cu${CUDA_VERSION}.txt
```
where `${CUDA_VERSION}` can be `75` (7.5), `80` (8.0), `90` (9.0), or `91` (9.1).
## Running DataWig
The DataWig API expects your data as a [pandas DataFrame](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html). Here is an example of how the dataframe might look:
|Product Type | Description | Size | Color |
|-------------|-----------------------|------|-------|
| Shoe | Ideal for Running | 12UK | Black |
| SDCards | Best SDCard ever ... | 8GB | Blue |
| Dress | This **yellow** dress | M | **?** |
### Quickstart Example
For most use cases, the `SimpleImputer` class is the best starting point. For convenience there is the function [SimpleImputer.complete](https://datawig.readthedocs.io/en/latest/source/API.html#datawig.simple_imputer.SimpleImputer.complete) that takes a DataFrame and fits an imputation model for each column with missing values, with all other columns as inputs:
```python
import datawig, numpy
# generate some data with simple nonlinear dependency
df = datawig.utils.generate_df_numeric()
# mask 10% of the values
df_with_missing = df.mask(numpy.random.rand(*df.shape) > .9)
# impute missing values
df_with_missing_imputed = datawig.SimpleImputer.complete(df_with_missing)
```
You can also impute values in specific columns only (called `output_column` below) using values in other columns (called `input_columns` below). DataWig currently supports imputation of categorical columns and numeric columns.
### Imputation of categorical columns
```python
import datawig
df = datawig.utils.generate_df_string( num_samples=200,
data_column_name='sentences',
label_column_name='label')
df_train, df_test = datawig.utils.random_split(df)
#Initialize a SimpleImputer model
imputer = datawig.SimpleImputer(
input_columns=['sentences'], # column(s) containing information about the column we want to impute
output_column='label', # the column we'd like to impute values for
output_path = 'imputer_model' # stores model data and metrics
)
#Fit an imputer model on the train data
imputer.fit(train_df=df_train)
#Impute missing values and return original dataframe with predictions
imputed = imputer.predict(df_test)
```
### Imputation of numerical columns
```python
import datawig
df = datawig.utils.generate_df_numeric( num_samples=200,
data_column_name='x',
label_column_name='y')
df_train, df_test = datawig.utils.random_split(df)
#Initialize a SimpleImputer model
imputer = datawig.SimpleImputer(
input_columns=['x'], # column(s) containing information about the column we want to impute
output_column='y', # the column we'd like to impute values for
output_path = 'imputer_model' # stores model data and metrics
)
#Fit an imputer model on the train data
imputer.fit(train_df=df_train, num_epochs=50)
#Impute missing values and return original dataframe with predictions
imputed = imputer.predict(df_test)
```
In order to have more control over the types of models and preprocessings, the `Imputer` class allows directly specifying all relevant model features and parameters.
For details on usage, refer to the provided [examples](./examples).
### Acknowledgments
Thanks to [David Greenberg](https://github.com/dgreenberg) for the package name.
### Building documentation
```bash
git clone git@github.com:awslabs/datawig.git
cd datawig/docs
make html
open _build/html/index.html
```
### Executing Tests
Clone the repository from git and set up virtualenv in the root dir of the package:
```
python3 -m venv venv
```
Install the package from local sources:
```
./venv/bin/pip install -e .
```
Run tests:
```
./venv/bin/pip install -r requirements/requirements.dev.txt
./venv/bin/python -m pytest
```
### Updating PyPi distribution
Before updating, increment the version in setup.py.
```
git clone git@github.com:awslabs/datawig.git
cd datawig
# build local distribution for current version
python setup.py sdist
# upload to PyPi
twine upload --skip-existing dist/*
```
%prep
%autosetup -n datawig-0.2.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-datawig -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.0-1
- Package Spec generated
|