blob: 4bdf309a4b8782bec28d1410741e38c3b7d24ecd (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
%global _empty_manifest_terminate_build 0
Name: python-dbt2looker
Version: 0.11.0
Release: 1
Summary: Generate lookml view files from dbt models
License: MIT
URL: https://github.com/hubble-data/dbt2looker
Source0: https://mirrors.aliyun.com/pypi/web/packages/9e/e9/30e36510fc149b5b92d44809e80f33fbdfebe2742ecd1b3ad839c4f7b48d/dbt2looker-0.11.0.tar.gz
BuildArch: noarch
Requires: python3-lkml
Requires: python3-pydantic
Requires: python3-PyYAML
Requires: python3-typing-extensions
Requires: python3-importlib-metadata
%description
# dbt2looker
Use `dbt2looker` to generate Looker view files automatically from dbt models.
Want a deeper integration between dbt and your BI tool? You should also checkout [Lightdash - the open source alternative to Looker](https://github.com/lightdash/lightdash)
**Features**
* **Column descriptions** synced to looker
* **Dimension** for each column in dbt model
* **Dimension groups** for datetime/timestamp/date columns
* **Measures** defined through dbt column `metadata` [see below](#defining-measures)
* Looker types
* Warehouses: BigQuery, Snowflake, Redshift (postgres to come)
[](https://asciinema.org/a/407407)
## Quickstart
Run `dbt2looker` in the root of your dbt project *after compiling looker docs*.
**Generate Looker view files for all models:**
```shell
dbt docs generate
dbt2looker
```
**Generate Looker view files for all models tagged `prod`**
```shell
dbt2looker --tag prod
```
## Install
**Install from PyPi repository**
Install from pypi into a fresh virtual environment.
```
# Create virtual env
python3.7 -m venv dbt2looker-venv
source dbt2looker-venv/bin/activate
# Install
pip install dbt2looker
# Run
dbt2looker
```
**Build from source**
Requires [poetry](https://python-poetry.org/docs/) and python >=3.7
For development, it is recommended to use python 3.7:
```
# Ensure you're using 3.7
poetry env use 3.7
# alternative: poetry env use /usr/local/opt/python@3.7/bin/python3
# Install dependencies and main package
poetry install
# Run dbtlooker in poetry environment
poetry run dbt2looker
```
## Defining measures
You can define looker measures in your dbt `schema.yml` files. For example:
```yaml
models:
- name: pages
columns:
- name: url
description: "Page url"
- name: event_id
description: unique event id for page view
meta:
measures:
page_views:
type: count
```
%package -n python3-dbt2looker
Summary: Generate lookml view files from dbt models
Provides: python-dbt2looker
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dbt2looker
# dbt2looker
Use `dbt2looker` to generate Looker view files automatically from dbt models.
Want a deeper integration between dbt and your BI tool? You should also checkout [Lightdash - the open source alternative to Looker](https://github.com/lightdash/lightdash)
**Features**
* **Column descriptions** synced to looker
* **Dimension** for each column in dbt model
* **Dimension groups** for datetime/timestamp/date columns
* **Measures** defined through dbt column `metadata` [see below](#defining-measures)
* Looker types
* Warehouses: BigQuery, Snowflake, Redshift (postgres to come)
[](https://asciinema.org/a/407407)
## Quickstart
Run `dbt2looker` in the root of your dbt project *after compiling looker docs*.
**Generate Looker view files for all models:**
```shell
dbt docs generate
dbt2looker
```
**Generate Looker view files for all models tagged `prod`**
```shell
dbt2looker --tag prod
```
## Install
**Install from PyPi repository**
Install from pypi into a fresh virtual environment.
```
# Create virtual env
python3.7 -m venv dbt2looker-venv
source dbt2looker-venv/bin/activate
# Install
pip install dbt2looker
# Run
dbt2looker
```
**Build from source**
Requires [poetry](https://python-poetry.org/docs/) and python >=3.7
For development, it is recommended to use python 3.7:
```
# Ensure you're using 3.7
poetry env use 3.7
# alternative: poetry env use /usr/local/opt/python@3.7/bin/python3
# Install dependencies and main package
poetry install
# Run dbtlooker in poetry environment
poetry run dbt2looker
```
## Defining measures
You can define looker measures in your dbt `schema.yml` files. For example:
```yaml
models:
- name: pages
columns:
- name: url
description: "Page url"
- name: event_id
description: unique event id for page view
meta:
measures:
page_views:
type: count
```
%package help
Summary: Development documents and examples for dbt2looker
Provides: python3-dbt2looker-doc
%description help
# dbt2looker
Use `dbt2looker` to generate Looker view files automatically from dbt models.
Want a deeper integration between dbt and your BI tool? You should also checkout [Lightdash - the open source alternative to Looker](https://github.com/lightdash/lightdash)
**Features**
* **Column descriptions** synced to looker
* **Dimension** for each column in dbt model
* **Dimension groups** for datetime/timestamp/date columns
* **Measures** defined through dbt column `metadata` [see below](#defining-measures)
* Looker types
* Warehouses: BigQuery, Snowflake, Redshift (postgres to come)
[](https://asciinema.org/a/407407)
## Quickstart
Run `dbt2looker` in the root of your dbt project *after compiling looker docs*.
**Generate Looker view files for all models:**
```shell
dbt docs generate
dbt2looker
```
**Generate Looker view files for all models tagged `prod`**
```shell
dbt2looker --tag prod
```
## Install
**Install from PyPi repository**
Install from pypi into a fresh virtual environment.
```
# Create virtual env
python3.7 -m venv dbt2looker-venv
source dbt2looker-venv/bin/activate
# Install
pip install dbt2looker
# Run
dbt2looker
```
**Build from source**
Requires [poetry](https://python-poetry.org/docs/) and python >=3.7
For development, it is recommended to use python 3.7:
```
# Ensure you're using 3.7
poetry env use 3.7
# alternative: poetry env use /usr/local/opt/python@3.7/bin/python3
# Install dependencies and main package
poetry install
# Run dbtlooker in poetry environment
poetry run dbt2looker
```
## Defining measures
You can define looker measures in your dbt `schema.yml` files. For example:
```yaml
models:
- name: pages
columns:
- name: url
description: "Page url"
- name: event_id
description: unique event id for page view
meta:
measures:
page_views:
type: count
```
%prep
%autosetup -n dbt2looker-0.11.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dbt2looker -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.11.0-1
- Package Spec generated
|