summaryrefslogtreecommitdiff
path: root/python-ddsketch.spec
blob: 4591a0d779b0efa5816d734c48872066aac2db3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
%global _empty_manifest_terminate_build 0
Name:		python-ddsketch
Version:	2.0.4
Release:	1
Summary:	Distributed quantile sketches
License:	Apache Software License
URL:		http://github.com/datadog/sketches-py
Source0:	https://mirrors.aliyun.com/pypi/web/packages/c7/18/668af158f4a464f220f93aca4c87d68f1bb2271fb9b0211ac1b500a65af4/ddsketch-2.0.4.tar.gz
BuildArch:	noarch

Requires:	python3-six
Requires:	python3-typing
Requires:	python3-protobuf
Requires:	python3-protobuf

%description
# ddsketch

This repo contains the Python implementation of the distributed quantile sketch
algorithm DDSketch [1]. DDSketch has relative-error guarantees for any quantile
q in [0, 1]. That is if the true value of the qth-quantile is `x` then DDSketch
returns a value `y` such that `|x-y| / x < e` where `e` is the relative error
parameter. (The default here is set to 0.01.)  DDSketch is also fully mergeable,
meaning that multiple sketches from distributed systems can be combined in a
central node.

Our default implementation, `DDSketch`, is guaranteed [1] to not grow too large
in size for any data that can be described by a distribution whose tails are
sub-exponential.

We also provide implementations (`LogCollapsingLowestDenseDDSketch` and
`LogCollapsingHighestDenseDDSketch`) where the q-quantile will be accurate up to
the specified relative error for q that is not too small (or large). Concretely,
the q-quantile will be accurate up to the specified relative error as long as it
belongs to one of the `m` bins kept by the sketch.  If the data is time in
seconds, the default of `m = 2048` covers 80 microseconds to 1 year.

## Installation

To install this package, run `pip install ddsketch`, or clone the repo and run
`python setup.py install`. This package depends on `numpy` and `protobuf`. (The
protobuf dependency can be removed if it's not applicable.)

## Usage
```
from ddsketch import DDSketch

sketch = DDSketch()
```
Add values to the sketch
```
import numpy as np

values = np.random.normal(size=500)
for v in values:
  sketch.add(v)
```
Find the quantiles of `values` to within the relative error.
```
quantiles = [sketch.get_quantile_value(q) for q in [0.5, 0.75, 0.9, 1]]
```
Merge another `DDSketch` into `sketch`.
```
another_sketch = DDSketch()
other_values = np.random.normal(size=500)
for v in other_values:
  another_sketch.add(v)
sketch.merge(another_sketch)
```
The quantiles of `values` concatenated with `other_values` are still accurate to within the relative error.

## Development

To work on ddsketch a Python interpreter must be installed. It is recommended to use the provided development
container (requires [docker](https://www.docker.com/)) which includes all the required Python interpreters.

    docker-compose run dev

Or, if developing outside of docker then it is recommended to use a virtual environment:

    pip install virtualenv
    virtualenv --python=3 .venv
    source .venv/bin/activate


### Testing

To run the tests install `riot`:

    pip install riot

Replace the Python version with the interpreter(s) available.

    # Run tests with Python 3.9
    riot run -p3.9 test

### Release notes

New features, bug fixes, deprecations and other breaking changes must have
release notes included.

To generate a release note for the change:

    riot run reno new <short-description-of-change-no-spaces>

Edit the generated file to include notes on the changes made in the commit/PR
and add commit it.


### Formatting

Format code with

    riot run fmt


### Type-checking

Type checking is done with [mypy](http://mypy-lang.org/):

    riot run mypy


### Type-checking

Lint the code with [flake8](https://flake8.pycqa.org/en/latest/):

    riot run flake8


### Protobuf

The protobuf is stored in the go repository: https://github.com/DataDog/sketches-go/blob/master/ddsketch/pb/ddsketch.proto

Install the minimum required protoc and generate the Python code:

```sh
docker run -v $PWD:/code -it ubuntu:18.04 /bin/bash
apt update && apt install protobuf-compiler  # default is 3.0.0
protoc --proto_path=ddsketch/pb/ --python_out=ddsketch/pb/ ddsketch/pb/ddsketch.proto
```


### Releasing

1. Generate the release notes and use [`pandoc`](https://pandoc.org/) to format
them for Github:
```bash
    git checkout master && git pull
    riot run -s reno report --no-show-source | pandoc -f rst -t gfm --wrap=none
```
   Copy the output into a new release: https://github.com/DataDog/sketches-py/releases/new.

2. Enter a tag for the release (following [`semver`](https://semver.org)) (eg. `v1.1.3`, `v1.0.3`, `v1.2.0`).
3. Use the tag without the `v` as the title.
4. Save the release as a draft and pass the link to someone else to give a quick review.
5. If all looks good hit publish


## References
[1] Charles Masson and Jee E Rim and Homin K. Lee. DDSketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12): 2195-2205, 2019. (The code referenced in the paper, including our implementation of the the Greenwald-Khanna (GK) algorithm, can be found at: https://github.com/DataDog/sketches-py/releases/tag/v0.1 )


%package -n python3-ddsketch
Summary:	Distributed quantile sketches
Provides:	python-ddsketch
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-ddsketch
# ddsketch

This repo contains the Python implementation of the distributed quantile sketch
algorithm DDSketch [1]. DDSketch has relative-error guarantees for any quantile
q in [0, 1]. That is if the true value of the qth-quantile is `x` then DDSketch
returns a value `y` such that `|x-y| / x < e` where `e` is the relative error
parameter. (The default here is set to 0.01.)  DDSketch is also fully mergeable,
meaning that multiple sketches from distributed systems can be combined in a
central node.

Our default implementation, `DDSketch`, is guaranteed [1] to not grow too large
in size for any data that can be described by a distribution whose tails are
sub-exponential.

We also provide implementations (`LogCollapsingLowestDenseDDSketch` and
`LogCollapsingHighestDenseDDSketch`) where the q-quantile will be accurate up to
the specified relative error for q that is not too small (or large). Concretely,
the q-quantile will be accurate up to the specified relative error as long as it
belongs to one of the `m` bins kept by the sketch.  If the data is time in
seconds, the default of `m = 2048` covers 80 microseconds to 1 year.

## Installation

To install this package, run `pip install ddsketch`, or clone the repo and run
`python setup.py install`. This package depends on `numpy` and `protobuf`. (The
protobuf dependency can be removed if it's not applicable.)

## Usage
```
from ddsketch import DDSketch

sketch = DDSketch()
```
Add values to the sketch
```
import numpy as np

values = np.random.normal(size=500)
for v in values:
  sketch.add(v)
```
Find the quantiles of `values` to within the relative error.
```
quantiles = [sketch.get_quantile_value(q) for q in [0.5, 0.75, 0.9, 1]]
```
Merge another `DDSketch` into `sketch`.
```
another_sketch = DDSketch()
other_values = np.random.normal(size=500)
for v in other_values:
  another_sketch.add(v)
sketch.merge(another_sketch)
```
The quantiles of `values` concatenated with `other_values` are still accurate to within the relative error.

## Development

To work on ddsketch a Python interpreter must be installed. It is recommended to use the provided development
container (requires [docker](https://www.docker.com/)) which includes all the required Python interpreters.

    docker-compose run dev

Or, if developing outside of docker then it is recommended to use a virtual environment:

    pip install virtualenv
    virtualenv --python=3 .venv
    source .venv/bin/activate


### Testing

To run the tests install `riot`:

    pip install riot

Replace the Python version with the interpreter(s) available.

    # Run tests with Python 3.9
    riot run -p3.9 test

### Release notes

New features, bug fixes, deprecations and other breaking changes must have
release notes included.

To generate a release note for the change:

    riot run reno new <short-description-of-change-no-spaces>

Edit the generated file to include notes on the changes made in the commit/PR
and add commit it.


### Formatting

Format code with

    riot run fmt


### Type-checking

Type checking is done with [mypy](http://mypy-lang.org/):

    riot run mypy


### Type-checking

Lint the code with [flake8](https://flake8.pycqa.org/en/latest/):

    riot run flake8


### Protobuf

The protobuf is stored in the go repository: https://github.com/DataDog/sketches-go/blob/master/ddsketch/pb/ddsketch.proto

Install the minimum required protoc and generate the Python code:

```sh
docker run -v $PWD:/code -it ubuntu:18.04 /bin/bash
apt update && apt install protobuf-compiler  # default is 3.0.0
protoc --proto_path=ddsketch/pb/ --python_out=ddsketch/pb/ ddsketch/pb/ddsketch.proto
```


### Releasing

1. Generate the release notes and use [`pandoc`](https://pandoc.org/) to format
them for Github:
```bash
    git checkout master && git pull
    riot run -s reno report --no-show-source | pandoc -f rst -t gfm --wrap=none
```
   Copy the output into a new release: https://github.com/DataDog/sketches-py/releases/new.

2. Enter a tag for the release (following [`semver`](https://semver.org)) (eg. `v1.1.3`, `v1.0.3`, `v1.2.0`).
3. Use the tag without the `v` as the title.
4. Save the release as a draft and pass the link to someone else to give a quick review.
5. If all looks good hit publish


## References
[1] Charles Masson and Jee E Rim and Homin K. Lee. DDSketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12): 2195-2205, 2019. (The code referenced in the paper, including our implementation of the the Greenwald-Khanna (GK) algorithm, can be found at: https://github.com/DataDog/sketches-py/releases/tag/v0.1 )


%package help
Summary:	Development documents and examples for ddsketch
Provides:	python3-ddsketch-doc
%description help
# ddsketch

This repo contains the Python implementation of the distributed quantile sketch
algorithm DDSketch [1]. DDSketch has relative-error guarantees for any quantile
q in [0, 1]. That is if the true value of the qth-quantile is `x` then DDSketch
returns a value `y` such that `|x-y| / x < e` where `e` is the relative error
parameter. (The default here is set to 0.01.)  DDSketch is also fully mergeable,
meaning that multiple sketches from distributed systems can be combined in a
central node.

Our default implementation, `DDSketch`, is guaranteed [1] to not grow too large
in size for any data that can be described by a distribution whose tails are
sub-exponential.

We also provide implementations (`LogCollapsingLowestDenseDDSketch` and
`LogCollapsingHighestDenseDDSketch`) where the q-quantile will be accurate up to
the specified relative error for q that is not too small (or large). Concretely,
the q-quantile will be accurate up to the specified relative error as long as it
belongs to one of the `m` bins kept by the sketch.  If the data is time in
seconds, the default of `m = 2048` covers 80 microseconds to 1 year.

## Installation

To install this package, run `pip install ddsketch`, or clone the repo and run
`python setup.py install`. This package depends on `numpy` and `protobuf`. (The
protobuf dependency can be removed if it's not applicable.)

## Usage
```
from ddsketch import DDSketch

sketch = DDSketch()
```
Add values to the sketch
```
import numpy as np

values = np.random.normal(size=500)
for v in values:
  sketch.add(v)
```
Find the quantiles of `values` to within the relative error.
```
quantiles = [sketch.get_quantile_value(q) for q in [0.5, 0.75, 0.9, 1]]
```
Merge another `DDSketch` into `sketch`.
```
another_sketch = DDSketch()
other_values = np.random.normal(size=500)
for v in other_values:
  another_sketch.add(v)
sketch.merge(another_sketch)
```
The quantiles of `values` concatenated with `other_values` are still accurate to within the relative error.

## Development

To work on ddsketch a Python interpreter must be installed. It is recommended to use the provided development
container (requires [docker](https://www.docker.com/)) which includes all the required Python interpreters.

    docker-compose run dev

Or, if developing outside of docker then it is recommended to use a virtual environment:

    pip install virtualenv
    virtualenv --python=3 .venv
    source .venv/bin/activate


### Testing

To run the tests install `riot`:

    pip install riot

Replace the Python version with the interpreter(s) available.

    # Run tests with Python 3.9
    riot run -p3.9 test

### Release notes

New features, bug fixes, deprecations and other breaking changes must have
release notes included.

To generate a release note for the change:

    riot run reno new <short-description-of-change-no-spaces>

Edit the generated file to include notes on the changes made in the commit/PR
and add commit it.


### Formatting

Format code with

    riot run fmt


### Type-checking

Type checking is done with [mypy](http://mypy-lang.org/):

    riot run mypy


### Type-checking

Lint the code with [flake8](https://flake8.pycqa.org/en/latest/):

    riot run flake8


### Protobuf

The protobuf is stored in the go repository: https://github.com/DataDog/sketches-go/blob/master/ddsketch/pb/ddsketch.proto

Install the minimum required protoc and generate the Python code:

```sh
docker run -v $PWD:/code -it ubuntu:18.04 /bin/bash
apt update && apt install protobuf-compiler  # default is 3.0.0
protoc --proto_path=ddsketch/pb/ --python_out=ddsketch/pb/ ddsketch/pb/ddsketch.proto
```


### Releasing

1. Generate the release notes and use [`pandoc`](https://pandoc.org/) to format
them for Github:
```bash
    git checkout master && git pull
    riot run -s reno report --no-show-source | pandoc -f rst -t gfm --wrap=none
```
   Copy the output into a new release: https://github.com/DataDog/sketches-py/releases/new.

2. Enter a tag for the release (following [`semver`](https://semver.org)) (eg. `v1.1.3`, `v1.0.3`, `v1.2.0`).
3. Use the tag without the `v` as the title.
4. Save the release as a draft and pass the link to someone else to give a quick review.
5. If all looks good hit publish


## References
[1] Charles Masson and Jee E Rim and Homin K. Lee. DDSketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12): 2195-2205, 2019. (The code referenced in the paper, including our implementation of the the Greenwald-Khanna (GK) algorithm, can be found at: https://github.com/DataDog/sketches-py/releases/tag/v0.1 )


%prep
%autosetup -n ddsketch-2.0.4

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-ddsketch -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.4-1
- Package Spec generated