blob: 4f4b5d8067c4fdd3737619be9ea189a878afec9a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
|
%global _empty_manifest_terminate_build 0
Name: python-deepctr-torch
Version: 0.2.9
Release: 1
Summary: Easy-to-use,Modular and Extendible package of deep learning based CTR(Click Through Rate) prediction models with PyTorch
License: Apache-2.0
URL: https://github.com/shenweichen/deepctr-torch
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/29/47/9d383aaef8838b7d0707c7fb8444f4a0f87a3330ae8fb25fa0591d0e16cc/deepctr-torch-0.2.9.tar.gz
BuildArch: noarch
Requires: python3-torch
Requires: python3-tqdm
Requires: python3-scikit-learn
Requires: python3-tensorflow
%description
# DeepCTR-Torch
[](https://pypi.org/project/deepctr-torch)
[](https://pepy.tech/project/deepctr-torch)
[](https://pypi.org/project/deepctr-torch)
[](https://github.com/shenweichen/deepctr-torch/issues)
[](https://deepctr-torch.readthedocs.io/)

[](https://codecov.io/gh/shenweichen/DeepCTR-Torch)
[](./README.md#disscussiongroup)
[](https://github.com/shenweichen/deepctr-torch/blob/master/LICENSE)
PyTorch version of [DeepCTR](https://github.com/shenweichen/DeepCTR).
DeepCTR is a **Easy-to-use**,**Modular** and **Extendible** package of deep-learning based CTR models along with lots of core components layers which can be used to build your own custom model easily.You can use any complex model with `model.fit()`and `model.predict()` .Install through `pip install -U deepctr-torch`.
Let's [**Get Started!**](https://deepctr-torch.readthedocs.io/en/latest/Quick-Start.html)([Chinese Introduction](https://zhuanlan.zhihu.com/p/53231955))
## Models List
| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) |
| Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) |
| Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
| DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
| Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) |
| Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) |
| Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) |
| Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) |
| xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) |
| Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
| Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
| AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) |
| ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) |
| FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) |
| IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) |
| DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) |
| DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) |
| AFN | [AAAI 2020][Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://arxiv.org/pdf/1909.03276) |
| SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) |
| ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://dl.acm.org/doi/10.1145/3209978.3210104) |
| MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) |
## DisscussionGroup & Related Projects
- [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions)
- Wechat Discussions
|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [](https://github.com/shenweichen/AlgoNotes)| [](https://github.com/shenweichen/AlgoNotes)|[](https://t.zsxq.com/026UJEuzv)|
- Related Projects
- [AlgoNotes](https://github.com/shenweichen/AlgoNotes)
- [DeepCTR](https://github.com/shenweichen/DeepCTR)
- [DeepMatch](https://github.com/shenweichen/DeepMatch)
- [GraphEmbedding](https://github.com/shenweichen/GraphEmbedding)
## Main Contributors([welcome to join us!](./CONTRIBUTING.md))
<table border="0">
<tbody>
<tr align="center" >
<td>
<a href="https://github.com/shenweichen"><img width="70" height="70" src="https://github.com/shenweichen.png?s=40" alt="pic"></a><br>
<a href="https://github.com/shenweichen">Shen Weichen</a>
<p> Alibaba Group </p>
</td>
<td>
<a href="https://github.com/zanshuxun"><img width="70" height="70" src="https://github.com/zanshuxun.png?s=40" alt="pic"></a><br>
<a href="https://github.com/zanshuxun">Zan Shuxun</a>
<p> Alibaba Group </p>
</td>
<td>
<a href="https://github.com/weberrr"><img width="70" height="70" src="https://github.com/weberrr.png?s=40" alt="pic"></a><br>
<a href="https://github.com/weberrr">Wang Ze</a>
<p> Meituan </p>
</td>
<td>
<a href="https://github.com/wutongzhang"><img width="70" height="70" src="https://github.com/wutongzhang.png?s=40" alt="pic"></a><br>
<a href="https://github.com/wutongzhang">Zhang Wutong</a>
<p> Tencent </p>
</td>
<td>
<a href="https://github.com/ZhangYuef"><img width="70" height="70" src="https://github.com/ZhangYuef.png?s=40" alt="pic"></a><br>
<a href="https://github.com/ZhangYuef">Zhang Yuefeng</a>
<p> Peking University </p>
</td>
</tr>
<tr align="center">
<td>
<a href="https://github.com/JyiHUO"><img width="70" height="70" src="https://github.com/JyiHUO.png?s=40" alt="pic"></a><br>
<a href="https://github.com/JyiHUO">Huo Junyi</a>
<p>
University of Southampton <br> <br> </p>
</td>
<td>
<a href="https://github.com/Zengai"><img width="70" height="70" src="https://github.com/Zengai.png?s=40" alt="pic"></a><br>
<a href="https://github.com/Zengai">Zeng Kai</a>
<p>
SenseTime <br> <br> </p>
</td>
<td>
<a href="https://github.com/chenkkkk"><img width="70" height="70" src="https://github.com/chenkkkk.png?s=40" alt="pic"></a><br>
<a href="https://github.com/chenkkkk">Chen K</a>
<p>
NetEase <br> <br> </p>
</td>
<td>
<a href="https://github.com/WeiyuCheng"><img width="70" height="70" src="https://github.com/WeiyuCheng.png?s=40" alt="pic"></a><br>
<a href="https://github.com/WeiyuCheng">Cheng Weiyu</a>
<p>
Shanghai Jiao Tong University</p>
</td>
<td>
<a href="https://github.com/tangaqi"><img width="70" height="70" src="https://github.com/tangaqi.png?s=40" alt="pic"></a><br>
<a href="https://github.com/tangaqi">Tang</a>
<p>
Tongji University <br> <br> </p>
</td>
</tr>
</tbody>
</table>
%package -n python3-deepctr-torch
Summary: Easy-to-use,Modular and Extendible package of deep learning based CTR(Click Through Rate) prediction models with PyTorch
Provides: python-deepctr-torch
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-deepctr-torch
# DeepCTR-Torch
[](https://pypi.org/project/deepctr-torch)
[](https://pepy.tech/project/deepctr-torch)
[](https://pypi.org/project/deepctr-torch)
[](https://github.com/shenweichen/deepctr-torch/issues)
[](https://deepctr-torch.readthedocs.io/)

[](https://codecov.io/gh/shenweichen/DeepCTR-Torch)
[](./README.md#disscussiongroup)
[](https://github.com/shenweichen/deepctr-torch/blob/master/LICENSE)
PyTorch version of [DeepCTR](https://github.com/shenweichen/DeepCTR).
DeepCTR is a **Easy-to-use**,**Modular** and **Extendible** package of deep-learning based CTR models along with lots of core components layers which can be used to build your own custom model easily.You can use any complex model with `model.fit()`and `model.predict()` .Install through `pip install -U deepctr-torch`.
Let's [**Get Started!**](https://deepctr-torch.readthedocs.io/en/latest/Quick-Start.html)([Chinese Introduction](https://zhuanlan.zhihu.com/p/53231955))
## Models List
| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) |
| Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) |
| Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
| DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
| Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) |
| Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) |
| Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) |
| Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) |
| xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) |
| Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
| Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
| AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) |
| ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) |
| FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) |
| IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) |
| DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) |
| DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) |
| AFN | [AAAI 2020][Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://arxiv.org/pdf/1909.03276) |
| SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) |
| ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://dl.acm.org/doi/10.1145/3209978.3210104) |
| MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) |
## DisscussionGroup & Related Projects
- [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions)
- Wechat Discussions
|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [](https://github.com/shenweichen/AlgoNotes)| [](https://github.com/shenweichen/AlgoNotes)|[](https://t.zsxq.com/026UJEuzv)|
- Related Projects
- [AlgoNotes](https://github.com/shenweichen/AlgoNotes)
- [DeepCTR](https://github.com/shenweichen/DeepCTR)
- [DeepMatch](https://github.com/shenweichen/DeepMatch)
- [GraphEmbedding](https://github.com/shenweichen/GraphEmbedding)
## Main Contributors([welcome to join us!](./CONTRIBUTING.md))
<table border="0">
<tbody>
<tr align="center" >
<td>
<a href="https://github.com/shenweichen"><img width="70" height="70" src="https://github.com/shenweichen.png?s=40" alt="pic"></a><br>
<a href="https://github.com/shenweichen">Shen Weichen</a>
<p> Alibaba Group </p>
</td>
<td>
<a href="https://github.com/zanshuxun"><img width="70" height="70" src="https://github.com/zanshuxun.png?s=40" alt="pic"></a><br>
<a href="https://github.com/zanshuxun">Zan Shuxun</a>
<p> Alibaba Group </p>
</td>
<td>
<a href="https://github.com/weberrr"><img width="70" height="70" src="https://github.com/weberrr.png?s=40" alt="pic"></a><br>
<a href="https://github.com/weberrr">Wang Ze</a>
<p> Meituan </p>
</td>
<td>
<a href="https://github.com/wutongzhang"><img width="70" height="70" src="https://github.com/wutongzhang.png?s=40" alt="pic"></a><br>
<a href="https://github.com/wutongzhang">Zhang Wutong</a>
<p> Tencent </p>
</td>
<td>
<a href="https://github.com/ZhangYuef"><img width="70" height="70" src="https://github.com/ZhangYuef.png?s=40" alt="pic"></a><br>
<a href="https://github.com/ZhangYuef">Zhang Yuefeng</a>
<p> Peking University </p>
</td>
</tr>
<tr align="center">
<td>
<a href="https://github.com/JyiHUO"><img width="70" height="70" src="https://github.com/JyiHUO.png?s=40" alt="pic"></a><br>
<a href="https://github.com/JyiHUO">Huo Junyi</a>
<p>
University of Southampton <br> <br> </p>
</td>
<td>
<a href="https://github.com/Zengai"><img width="70" height="70" src="https://github.com/Zengai.png?s=40" alt="pic"></a><br>
<a href="https://github.com/Zengai">Zeng Kai</a>
<p>
SenseTime <br> <br> </p>
</td>
<td>
<a href="https://github.com/chenkkkk"><img width="70" height="70" src="https://github.com/chenkkkk.png?s=40" alt="pic"></a><br>
<a href="https://github.com/chenkkkk">Chen K</a>
<p>
NetEase <br> <br> </p>
</td>
<td>
<a href="https://github.com/WeiyuCheng"><img width="70" height="70" src="https://github.com/WeiyuCheng.png?s=40" alt="pic"></a><br>
<a href="https://github.com/WeiyuCheng">Cheng Weiyu</a>
<p>
Shanghai Jiao Tong University</p>
</td>
<td>
<a href="https://github.com/tangaqi"><img width="70" height="70" src="https://github.com/tangaqi.png?s=40" alt="pic"></a><br>
<a href="https://github.com/tangaqi">Tang</a>
<p>
Tongji University <br> <br> </p>
</td>
</tr>
</tbody>
</table>
%package help
Summary: Development documents and examples for deepctr-torch
Provides: python3-deepctr-torch-doc
%description help
# DeepCTR-Torch
[](https://pypi.org/project/deepctr-torch)
[](https://pepy.tech/project/deepctr-torch)
[](https://pypi.org/project/deepctr-torch)
[](https://github.com/shenweichen/deepctr-torch/issues)
[](https://deepctr-torch.readthedocs.io/)

[](https://codecov.io/gh/shenweichen/DeepCTR-Torch)
[](./README.md#disscussiongroup)
[](https://github.com/shenweichen/deepctr-torch/blob/master/LICENSE)
PyTorch version of [DeepCTR](https://github.com/shenweichen/DeepCTR).
DeepCTR is a **Easy-to-use**,**Modular** and **Extendible** package of deep-learning based CTR models along with lots of core components layers which can be used to build your own custom model easily.You can use any complex model with `model.fit()`and `model.predict()` .Install through `pip install -U deepctr-torch`.
Let's [**Get Started!**](https://deepctr-torch.readthedocs.io/en/latest/Quick-Start.html)([Chinese Introduction](https://zhuanlan.zhihu.com/p/53231955))
## Models List
| Model | Paper |
| :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) |
| Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) |
| Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) |
| Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) |
| DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) |
| Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) |
| Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) |
| Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) |
| Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) |
| xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) |
| Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) |
| Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) |
| AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) |
| ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) |
| FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) |
| IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) |
| DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) |
| DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) |
| AFN | [AAAI 2020][Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://arxiv.org/pdf/1909.03276) |
| SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) |
| ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://dl.acm.org/doi/10.1145/3209978.3210104) |
| MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) |
| PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) |
## DisscussionGroup & Related Projects
- [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions)
- Wechat Discussions
|公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)|
|:--:|:--:|:--:|
| [](https://github.com/shenweichen/AlgoNotes)| [](https://github.com/shenweichen/AlgoNotes)|[](https://t.zsxq.com/026UJEuzv)|
- Related Projects
- [AlgoNotes](https://github.com/shenweichen/AlgoNotes)
- [DeepCTR](https://github.com/shenweichen/DeepCTR)
- [DeepMatch](https://github.com/shenweichen/DeepMatch)
- [GraphEmbedding](https://github.com/shenweichen/GraphEmbedding)
## Main Contributors([welcome to join us!](./CONTRIBUTING.md))
<table border="0">
<tbody>
<tr align="center" >
<td>
<a href="https://github.com/shenweichen"><img width="70" height="70" src="https://github.com/shenweichen.png?s=40" alt="pic"></a><br>
<a href="https://github.com/shenweichen">Shen Weichen</a>
<p> Alibaba Group </p>
</td>
<td>
<a href="https://github.com/zanshuxun"><img width="70" height="70" src="https://github.com/zanshuxun.png?s=40" alt="pic"></a><br>
<a href="https://github.com/zanshuxun">Zan Shuxun</a>
<p> Alibaba Group </p>
</td>
<td>
<a href="https://github.com/weberrr"><img width="70" height="70" src="https://github.com/weberrr.png?s=40" alt="pic"></a><br>
<a href="https://github.com/weberrr">Wang Ze</a>
<p> Meituan </p>
</td>
<td>
<a href="https://github.com/wutongzhang"><img width="70" height="70" src="https://github.com/wutongzhang.png?s=40" alt="pic"></a><br>
<a href="https://github.com/wutongzhang">Zhang Wutong</a>
<p> Tencent </p>
</td>
<td>
<a href="https://github.com/ZhangYuef"><img width="70" height="70" src="https://github.com/ZhangYuef.png?s=40" alt="pic"></a><br>
<a href="https://github.com/ZhangYuef">Zhang Yuefeng</a>
<p> Peking University </p>
</td>
</tr>
<tr align="center">
<td>
<a href="https://github.com/JyiHUO"><img width="70" height="70" src="https://github.com/JyiHUO.png?s=40" alt="pic"></a><br>
<a href="https://github.com/JyiHUO">Huo Junyi</a>
<p>
University of Southampton <br> <br> </p>
</td>
<td>
<a href="https://github.com/Zengai"><img width="70" height="70" src="https://github.com/Zengai.png?s=40" alt="pic"></a><br>
<a href="https://github.com/Zengai">Zeng Kai</a>
<p>
SenseTime <br> <br> </p>
</td>
<td>
<a href="https://github.com/chenkkkk"><img width="70" height="70" src="https://github.com/chenkkkk.png?s=40" alt="pic"></a><br>
<a href="https://github.com/chenkkkk">Chen K</a>
<p>
NetEase <br> <br> </p>
</td>
<td>
<a href="https://github.com/WeiyuCheng"><img width="70" height="70" src="https://github.com/WeiyuCheng.png?s=40" alt="pic"></a><br>
<a href="https://github.com/WeiyuCheng">Cheng Weiyu</a>
<p>
Shanghai Jiao Tong University</p>
</td>
<td>
<a href="https://github.com/tangaqi"><img width="70" height="70" src="https://github.com/tangaqi.png?s=40" alt="pic"></a><br>
<a href="https://github.com/tangaqi">Tang</a>
<p>
Tongji University <br> <br> </p>
</td>
</tr>
</tbody>
</table>
%prep
%autosetup -n deepctr-torch-0.2.9
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-deepctr-torch -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu May 18 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.9-1
- Package Spec generated
|