1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
|
%global _empty_manifest_terminate_build 0
Name: python-deepsparse
Version: 1.5.0
Release: 1
Summary: An inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application
License: Neural Magic DeepSparse Community License, Apache
URL: https://github.com/neuralmagic/deepsparse
Source0: https://mirrors.aliyun.com/pypi/web/packages/af/9a/4e35b6aa1f14544536f9f14b6fa2888a450ee94fdb32d2e8eba0274733a8/deepsparse-1.5.0.tar.gz
BuildArch: noarch
%description
<!--
Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div style="display: flex; flex-direction: column; align-items: center;">
<h1>
<img alt="tool icon" src="https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/icon-deepsparse.png" />
DeepSparse
</h1>
<h4> An inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application</h4>
<div align="center">
<a href="https://docs.neuralmagic.com/deepsparse/">
<img alt="Documentation" src="https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs" height="20" />
</a>
<a href="https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/">
<img alt="Slack" src="https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/issues/">
<img alt="Support" src="https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/actions/workflows/quality-check.yaml">
<img alt="Main" src="https://img.shields.io/github/workflow/status/neuralmagic/deepsparse/Quality%20Checks/main?label=build&style=for-the-badge" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/neuralmagic/deepsparse.svg?style=for-the-badge" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge" height="20" />
</a>
<a href="https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA">
<img alt="YouTube" src="https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white" height="20" />
</a>
<a href="https://medium.com/limitlessai">
<img alt="Medium" src="https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white" height="20" />
</a>
<a href="https://twitter.com/neuralmagic">
<img alt="Twitter" src="https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social" height="20" />
</a>
</div>
</div>
A CPU runtime that takes advantage of sparsity within neural networks to reduce compute. Read [more about sparsification](https://docs.neuralmagic.com/user-guides/sparsification).
Neural Magic's DeepSparse is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX.
ONNX gives the flexibility to serve your model in a framework-agnostic environment.
Support includes [PyTorch,](https://pytorch.org/docs/stable/onnx.html) [TensorFlow,](https://github.com/onnx/tensorflow-onnx) [Keras,](https://github.com/onnx/keras-onnx) and [many other frameworks](https://github.com/onnx/onnxmltools).
## Installation
Install DeepSparse Community as follows:
```bash
pip install deepsparse
```
DeepSparse is available in two editions:
1. [**DeepSparse Community**](#installation) is open-source and free for evaluation, research, and non-production use with our [DeepSparse Community License](https://neuralmagic.com/legal/engine-license-agreement/).
2. [**DeepSparse Enterprise**](https://docs.neuralmagic.com/products/deepsparse-ent) requires a Trial License or [can be fully licensed](https://neuralmagic.com/legal/master-software-license-and-service-agreement/) for production, commercial applications.
## 🧰 Hardware Support and System Requirements
To ensure that your CPU is compatible with DeepSparse, it is recommended to review the [Supported Hardware for DeepSparse](https://docs.neuralmagic.com/user-guides/deepsparse-engine/hardware-support) documentation.
To ensure that you get the best performance from DeepSparse, it has been thoroughly tested on Python versions 3.7-3.10, ONNX versions 1.5.0-1.12.0, ONNX opset version 11 or higher, and manylinux compliant systems. It is highly recommended to use a [virtual environment](https://docs.python.org/3/library/venv.html) when running DeepSparse. Please note that DeepSparse is only supported natively on Linux. For those using Mac or Windows, running Linux in a Docker or virtual machine is necessary to use DeepSparse.
## Features
- 👩💻 Pipelines for [NLP](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/transformers), [CV Classification](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/image_classification), [CV Detection](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/yolo), [CV Segmentation](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/yolact) and more!
- 🔌 [DeepSparse Server](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server)
- 📜 [DeepSparse Benchmark](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark)
- ☁️ [Cloud Deployments and Demos](https://github.com/neuralmagic/deepsparse/tree/main/examples)
### 👩💻 Pipelines
Pipelines are a high-level Python interface for running inference with DeepSparse across select tasks in NLP and CV:
| NLP | CV |
|-----------------------|---------------------------|
| Text Classification `"text_classification"` | Image Classification `"image_classification"` |
| Token Classification `"token_classification"` | Object Detection `"yolo"` |
| Sentiment Analysis `"sentiment_analysis"` | Instance Segmentation `"yolact"` |
| Question Answering `"question_answering"` | Keypoint Detection `"open_pif_paf"` |
| MultiLabel Text Classification `"text_classification"` | |
| Document Classification `"text_classification"` | |
| Zero-Shot Text Classification `"zero_shot_text_classification"` | |
**NLP Example** | Question Answering
```python
from deepsparse import Pipeline
qa_pipeline = Pipeline.create(
task="question-answering",
model_path="zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni",
)
inference = qa_pipeline(question="What's my name?", context="My name is Snorlax")
```
**CV Example** | Image Classification
```python
from deepsparse import Pipeline
cv_pipeline = Pipeline.create(
task='image_classification',
model_path='zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none',
)
input_image = "my_image.png"
inference = cv_pipeline(images=input_image)
```
### 🔌 DeepSparse Server
DeepSparse Server is a tool that enables you to serve your models and pipelines directly from your terminal.
The server is built on top of two powerful libraries: the FastAPI web framework and the Uvicorn web server. This combination ensures that DeepSparse Server delivers excellent performance and reliability. Install with this command:
```bash
pip install deepsparse[server]
```
#### Single Model
Once installed, the following example CLI command is available for running inference with a single BERT model:
```bash
deepsparse.server \
task question_answering \
--model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"
```
To look up arguments run: `deepsparse.server --help`.
#### Multiple Models
To deploy multiple models in your setup, a `config.yaml` file should be created. In the example provided, two BERT models are configured for the question-answering task:
```yaml
num_workers: 1
endpoints:
- task: question_answering
route: /predict/question_answering/base
model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none
batch_size: 1
- task: question_answering
route: /predict/question_answering/pruned_quant
model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
batch_size: 1
```
After the `config.yaml` file has been created, the server can be started by passing the file path as an argument:
```bash
deepsparse.server config config.yaml
```
Read the [DeepSparse Server](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server) README for further details.
### 📜 DeepSparse Benchmark
DeepSparse Benchmark, a command-line (CLI) tool, is used to evaluate the DeepSparse Engine's performance with ONNX models. This tool processes arguments, downloads and compiles the network into the engine, creates input tensors, and runs the model based on the selected scenario.
Run `deepsparse.benchmark -h` to look up arguments:
```shell
deepsparse.benchmark [-h] [-b BATCH_SIZE] [-i INPUT_SHAPES] [-ncores NUM_CORES] [-s {async,sync,elastic}] [-t TIME]
[-w WARMUP_TIME] [-nstreams NUM_STREAMS] [-pin {none,core,numa}] [-e ENGINE] [-q] [-x EXPORT_PATH]
model_path
```
Refer to the [Benchmark](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark) README for examples of specific inference scenarios.
### 🦉 Custom ONNX Model Support
DeepSparse is capable of accepting ONNX models from two sources:
**SparseZoo ONNX**: This is an open-source repository of sparse models available for download. [SparseZoo](https://github.com/neuralmagic/sparsezoo) offers inference-optimized models, which are trained using repeatable sparsification recipes and state-of-the-art techniques from [SparseML](https://github.com/neuralmagic/sparseml).
**Custom ONNX**: Users can provide their own ONNX models, whether dense or sparse. By plugging in a custom model, users can compare its performance with other solutions.
```bash
> wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx
Saving to: ‘mobilenetv2-7.onnx’
```
Custom ONNX Benchmark example:
```python
from deepsparse import compile_model
from deepsparse.utils import generate_random_inputs
onnx_filepath = "mobilenetv2-7.onnx"
batch_size = 16
# Generate random sample input
inputs = generate_random_inputs(onnx_filepath, batch_size)
# Compile and run
engine = compile_model(onnx_filepath, batch_size)
outputs = engine.run(inputs)
```
The [GitHub repository](https://github.com/neuralmagic/deepsparse) repository contains package APIs and examples that help users swiftly begin benchmarking and performing inference on sparse models.
### Scheduling Single-Stream, Multi-Stream, and Elastic Inference
DeepSparse offers different inference scenarios based on your use case. Read more details here: [Inference Types](https://github.com/neuralmagic/deepsparse/blob/main/docs/source/scheduler.md).
⚡ **Single-stream** scheduling: the latency/synchronous scenario, requests execute serially. [`default`]
<img src="https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/single-stream.png" alt="single stream diagram" />
It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.
⚡ **Multi-stream** scheduling: the throughput/asynchronous scenario, requests execute in parallel.
<img src="https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/multi-stream.png" alt="multi stream diagram" />
The most common use cases for the multi-stream scheduler are where parallelism is low with respect to core count, and where requests need to be made asynchronously without time to batch them.
## Resources
#### Libraries
- [DeepSparse](https://docs.neuralmagic.com/deepsparse/)
- [SparseML](https://docs.neuralmagic.com/sparseml/)
- [SparseZoo](https://docs.neuralmagic.com/sparsezoo/)
- [Sparsify](https://docs.neuralmagic.com/sparsify/)
#### Versions
- [DeepSparse](https://pypi.org/project/deepsparse) | stable
- [DeepSparse-Nightly](https://pypi.org/project/deepsparse-nightly/) | nightly (dev)
- [GitHub](https://github.com/neuralmagic/deepsparse/releases) | releases
#### Info
- [Blog](https://www.neuralmagic.com/blog/)
- [Resources](https://www.neuralmagic.com/resources/)
## Community
### Be Part of the Future... And the Future is Sparse!
Contribute with code, examples, integrations, and documentation as well as bug reports and feature requests! [Learn how here.](https://github.com/neuralmagic/deepsparse/blob/main/CONTRIBUTING.md)
For user help or questions about DeepSparse, sign up or log in to our **[Deep Sparse Community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)**. We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our [GitHub Issue Queue.](https://github.com/neuralmagic/deepsparse/issues) You can get the latest news, webinar and event invites, research papers, and other ML Performance tidbits by [subscribing](https://neuralmagic.com/subscribe/) to the Neural Magic community.
For more general questions about Neural Magic, complete this [form.](http://neuralmagic.com/contact/)
### License
[DeepSparse Community](https://docs.neuralmagic.com/products/deepsparse) is licensed under the [Neural Magic DeepSparse Community License.](https://github.com/neuralmagic/deepsparse/blob/main/LICENSE-NEURALMAGIC)
Some source code, example files, and scripts included in the deepsparse GitHub repository or directory are licensed under the [Apache License Version 2.0](https://github.com/neuralmagic/deepsparse/blob/main/LICENSE) as noted.
[DeepSparse Enterprise](https://docs.neuralmagic.com/products/deepsparse-ent) requires a Trial License or [can be fully licensed](https://neuralmagic.com/legal/master-software-license-and-service-agreement/) for production, commercial applications.
### Cite
Find this project useful in your research or other communications? Please consider citing:
```bibtex
@InProceedings{
pmlr-v119-kurtz20a,
title = {Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural Networks},
author = {Kurtz, Mark and Kopinsky, Justin and Gelashvili, Rati and Matveev, Alexander and Carr, John and Goin, Michael and Leiserson, William and Moore, Sage and Nell, Bill and Shavit, Nir and Alistarh, Dan},
booktitle = {Proceedings of the 37th International Conference on Machine Learning},
pages = {5533--5543},
year = {2020},
editor = {Hal Daumé III and Aarti Singh},
volume = {119},
series = {Proceedings of Machine Learning Research},
address = {Virtual},
month = {13--18 Jul},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf},
url = {http://proceedings.mlr.press/v119/kurtz20a.html}
}
@article{DBLP:journals/corr/abs-2111-13445,
author = {Eugenia Iofinova and
Alexandra Peste and
Mark Kurtz and
Dan Alistarh},
title = {How Well Do Sparse Imagenet Models Transfer?},
journal = {CoRR},
volume = {abs/2111.13445},
year = {2021},
url = {https://arxiv.org/abs/2111.13445},
eprinttype = {arXiv},
eprint = {2111.13445},
timestamp = {Wed, 01 Dec 2021 15:16:43 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-13445.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
%package -n python3-deepsparse
Summary: An inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application
Provides: python-deepsparse
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-deepsparse
<!--
Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div style="display: flex; flex-direction: column; align-items: center;">
<h1>
<img alt="tool icon" src="https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/icon-deepsparse.png" />
DeepSparse
</h1>
<h4> An inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application</h4>
<div align="center">
<a href="https://docs.neuralmagic.com/deepsparse/">
<img alt="Documentation" src="https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs" height="20" />
</a>
<a href="https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/">
<img alt="Slack" src="https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/issues/">
<img alt="Support" src="https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/actions/workflows/quality-check.yaml">
<img alt="Main" src="https://img.shields.io/github/workflow/status/neuralmagic/deepsparse/Quality%20Checks/main?label=build&style=for-the-badge" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/neuralmagic/deepsparse.svg?style=for-the-badge" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge" height="20" />
</a>
<a href="https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA">
<img alt="YouTube" src="https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white" height="20" />
</a>
<a href="https://medium.com/limitlessai">
<img alt="Medium" src="https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white" height="20" />
</a>
<a href="https://twitter.com/neuralmagic">
<img alt="Twitter" src="https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social" height="20" />
</a>
</div>
</div>
A CPU runtime that takes advantage of sparsity within neural networks to reduce compute. Read [more about sparsification](https://docs.neuralmagic.com/user-guides/sparsification).
Neural Magic's DeepSparse is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX.
ONNX gives the flexibility to serve your model in a framework-agnostic environment.
Support includes [PyTorch,](https://pytorch.org/docs/stable/onnx.html) [TensorFlow,](https://github.com/onnx/tensorflow-onnx) [Keras,](https://github.com/onnx/keras-onnx) and [many other frameworks](https://github.com/onnx/onnxmltools).
## Installation
Install DeepSparse Community as follows:
```bash
pip install deepsparse
```
DeepSparse is available in two editions:
1. [**DeepSparse Community**](#installation) is open-source and free for evaluation, research, and non-production use with our [DeepSparse Community License](https://neuralmagic.com/legal/engine-license-agreement/).
2. [**DeepSparse Enterprise**](https://docs.neuralmagic.com/products/deepsparse-ent) requires a Trial License or [can be fully licensed](https://neuralmagic.com/legal/master-software-license-and-service-agreement/) for production, commercial applications.
## 🧰 Hardware Support and System Requirements
To ensure that your CPU is compatible with DeepSparse, it is recommended to review the [Supported Hardware for DeepSparse](https://docs.neuralmagic.com/user-guides/deepsparse-engine/hardware-support) documentation.
To ensure that you get the best performance from DeepSparse, it has been thoroughly tested on Python versions 3.7-3.10, ONNX versions 1.5.0-1.12.0, ONNX opset version 11 or higher, and manylinux compliant systems. It is highly recommended to use a [virtual environment](https://docs.python.org/3/library/venv.html) when running DeepSparse. Please note that DeepSparse is only supported natively on Linux. For those using Mac or Windows, running Linux in a Docker or virtual machine is necessary to use DeepSparse.
## Features
- 👩💻 Pipelines for [NLP](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/transformers), [CV Classification](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/image_classification), [CV Detection](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/yolo), [CV Segmentation](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/yolact) and more!
- 🔌 [DeepSparse Server](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server)
- 📜 [DeepSparse Benchmark](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark)
- ☁️ [Cloud Deployments and Demos](https://github.com/neuralmagic/deepsparse/tree/main/examples)
### 👩💻 Pipelines
Pipelines are a high-level Python interface for running inference with DeepSparse across select tasks in NLP and CV:
| NLP | CV |
|-----------------------|---------------------------|
| Text Classification `"text_classification"` | Image Classification `"image_classification"` |
| Token Classification `"token_classification"` | Object Detection `"yolo"` |
| Sentiment Analysis `"sentiment_analysis"` | Instance Segmentation `"yolact"` |
| Question Answering `"question_answering"` | Keypoint Detection `"open_pif_paf"` |
| MultiLabel Text Classification `"text_classification"` | |
| Document Classification `"text_classification"` | |
| Zero-Shot Text Classification `"zero_shot_text_classification"` | |
**NLP Example** | Question Answering
```python
from deepsparse import Pipeline
qa_pipeline = Pipeline.create(
task="question-answering",
model_path="zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni",
)
inference = qa_pipeline(question="What's my name?", context="My name is Snorlax")
```
**CV Example** | Image Classification
```python
from deepsparse import Pipeline
cv_pipeline = Pipeline.create(
task='image_classification',
model_path='zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none',
)
input_image = "my_image.png"
inference = cv_pipeline(images=input_image)
```
### 🔌 DeepSparse Server
DeepSparse Server is a tool that enables you to serve your models and pipelines directly from your terminal.
The server is built on top of two powerful libraries: the FastAPI web framework and the Uvicorn web server. This combination ensures that DeepSparse Server delivers excellent performance and reliability. Install with this command:
```bash
pip install deepsparse[server]
```
#### Single Model
Once installed, the following example CLI command is available for running inference with a single BERT model:
```bash
deepsparse.server \
task question_answering \
--model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"
```
To look up arguments run: `deepsparse.server --help`.
#### Multiple Models
To deploy multiple models in your setup, a `config.yaml` file should be created. In the example provided, two BERT models are configured for the question-answering task:
```yaml
num_workers: 1
endpoints:
- task: question_answering
route: /predict/question_answering/base
model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none
batch_size: 1
- task: question_answering
route: /predict/question_answering/pruned_quant
model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
batch_size: 1
```
After the `config.yaml` file has been created, the server can be started by passing the file path as an argument:
```bash
deepsparse.server config config.yaml
```
Read the [DeepSparse Server](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server) README for further details.
### 📜 DeepSparse Benchmark
DeepSparse Benchmark, a command-line (CLI) tool, is used to evaluate the DeepSparse Engine's performance with ONNX models. This tool processes arguments, downloads and compiles the network into the engine, creates input tensors, and runs the model based on the selected scenario.
Run `deepsparse.benchmark -h` to look up arguments:
```shell
deepsparse.benchmark [-h] [-b BATCH_SIZE] [-i INPUT_SHAPES] [-ncores NUM_CORES] [-s {async,sync,elastic}] [-t TIME]
[-w WARMUP_TIME] [-nstreams NUM_STREAMS] [-pin {none,core,numa}] [-e ENGINE] [-q] [-x EXPORT_PATH]
model_path
```
Refer to the [Benchmark](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark) README for examples of specific inference scenarios.
### 🦉 Custom ONNX Model Support
DeepSparse is capable of accepting ONNX models from two sources:
**SparseZoo ONNX**: This is an open-source repository of sparse models available for download. [SparseZoo](https://github.com/neuralmagic/sparsezoo) offers inference-optimized models, which are trained using repeatable sparsification recipes and state-of-the-art techniques from [SparseML](https://github.com/neuralmagic/sparseml).
**Custom ONNX**: Users can provide their own ONNX models, whether dense or sparse. By plugging in a custom model, users can compare its performance with other solutions.
```bash
> wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx
Saving to: ‘mobilenetv2-7.onnx’
```
Custom ONNX Benchmark example:
```python
from deepsparse import compile_model
from deepsparse.utils import generate_random_inputs
onnx_filepath = "mobilenetv2-7.onnx"
batch_size = 16
# Generate random sample input
inputs = generate_random_inputs(onnx_filepath, batch_size)
# Compile and run
engine = compile_model(onnx_filepath, batch_size)
outputs = engine.run(inputs)
```
The [GitHub repository](https://github.com/neuralmagic/deepsparse) repository contains package APIs and examples that help users swiftly begin benchmarking and performing inference on sparse models.
### Scheduling Single-Stream, Multi-Stream, and Elastic Inference
DeepSparse offers different inference scenarios based on your use case. Read more details here: [Inference Types](https://github.com/neuralmagic/deepsparse/blob/main/docs/source/scheduler.md).
⚡ **Single-stream** scheduling: the latency/synchronous scenario, requests execute serially. [`default`]
<img src="https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/single-stream.png" alt="single stream diagram" />
It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.
⚡ **Multi-stream** scheduling: the throughput/asynchronous scenario, requests execute in parallel.
<img src="https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/multi-stream.png" alt="multi stream diagram" />
The most common use cases for the multi-stream scheduler are where parallelism is low with respect to core count, and where requests need to be made asynchronously without time to batch them.
## Resources
#### Libraries
- [DeepSparse](https://docs.neuralmagic.com/deepsparse/)
- [SparseML](https://docs.neuralmagic.com/sparseml/)
- [SparseZoo](https://docs.neuralmagic.com/sparsezoo/)
- [Sparsify](https://docs.neuralmagic.com/sparsify/)
#### Versions
- [DeepSparse](https://pypi.org/project/deepsparse) | stable
- [DeepSparse-Nightly](https://pypi.org/project/deepsparse-nightly/) | nightly (dev)
- [GitHub](https://github.com/neuralmagic/deepsparse/releases) | releases
#### Info
- [Blog](https://www.neuralmagic.com/blog/)
- [Resources](https://www.neuralmagic.com/resources/)
## Community
### Be Part of the Future... And the Future is Sparse!
Contribute with code, examples, integrations, and documentation as well as bug reports and feature requests! [Learn how here.](https://github.com/neuralmagic/deepsparse/blob/main/CONTRIBUTING.md)
For user help or questions about DeepSparse, sign up or log in to our **[Deep Sparse Community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)**. We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our [GitHub Issue Queue.](https://github.com/neuralmagic/deepsparse/issues) You can get the latest news, webinar and event invites, research papers, and other ML Performance tidbits by [subscribing](https://neuralmagic.com/subscribe/) to the Neural Magic community.
For more general questions about Neural Magic, complete this [form.](http://neuralmagic.com/contact/)
### License
[DeepSparse Community](https://docs.neuralmagic.com/products/deepsparse) is licensed under the [Neural Magic DeepSparse Community License.](https://github.com/neuralmagic/deepsparse/blob/main/LICENSE-NEURALMAGIC)
Some source code, example files, and scripts included in the deepsparse GitHub repository or directory are licensed under the [Apache License Version 2.0](https://github.com/neuralmagic/deepsparse/blob/main/LICENSE) as noted.
[DeepSparse Enterprise](https://docs.neuralmagic.com/products/deepsparse-ent) requires a Trial License or [can be fully licensed](https://neuralmagic.com/legal/master-software-license-and-service-agreement/) for production, commercial applications.
### Cite
Find this project useful in your research or other communications? Please consider citing:
```bibtex
@InProceedings{
pmlr-v119-kurtz20a,
title = {Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural Networks},
author = {Kurtz, Mark and Kopinsky, Justin and Gelashvili, Rati and Matveev, Alexander and Carr, John and Goin, Michael and Leiserson, William and Moore, Sage and Nell, Bill and Shavit, Nir and Alistarh, Dan},
booktitle = {Proceedings of the 37th International Conference on Machine Learning},
pages = {5533--5543},
year = {2020},
editor = {Hal Daumé III and Aarti Singh},
volume = {119},
series = {Proceedings of Machine Learning Research},
address = {Virtual},
month = {13--18 Jul},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf},
url = {http://proceedings.mlr.press/v119/kurtz20a.html}
}
@article{DBLP:journals/corr/abs-2111-13445,
author = {Eugenia Iofinova and
Alexandra Peste and
Mark Kurtz and
Dan Alistarh},
title = {How Well Do Sparse Imagenet Models Transfer?},
journal = {CoRR},
volume = {abs/2111.13445},
year = {2021},
url = {https://arxiv.org/abs/2111.13445},
eprinttype = {arXiv},
eprint = {2111.13445},
timestamp = {Wed, 01 Dec 2021 15:16:43 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-13445.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
%package help
Summary: Development documents and examples for deepsparse
Provides: python3-deepsparse-doc
%description help
<!--
Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div style="display: flex; flex-direction: column; align-items: center;">
<h1>
<img alt="tool icon" src="https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/icon-deepsparse.png" />
DeepSparse
</h1>
<h4> An inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application</h4>
<div align="center">
<a href="https://docs.neuralmagic.com/deepsparse/">
<img alt="Documentation" src="https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs" height="20" />
</a>
<a href="https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/">
<img alt="Slack" src="https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/issues/">
<img alt="Support" src="https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/actions/workflows/quality-check.yaml">
<img alt="Main" src="https://img.shields.io/github/workflow/status/neuralmagic/deepsparse/Quality%20Checks/main?label=build&style=for-the-badge" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/neuralmagic/deepsparse.svg?style=for-the-badge" height="20" />
</a>
<a href="https://github.com/neuralmagic/deepsparse/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge" height="20" />
</a>
<a href="https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA">
<img alt="YouTube" src="https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white" height="20" />
</a>
<a href="https://medium.com/limitlessai">
<img alt="Medium" src="https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white" height="20" />
</a>
<a href="https://twitter.com/neuralmagic">
<img alt="Twitter" src="https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social" height="20" />
</a>
</div>
</div>
A CPU runtime that takes advantage of sparsity within neural networks to reduce compute. Read [more about sparsification](https://docs.neuralmagic.com/user-guides/sparsification).
Neural Magic's DeepSparse is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX.
ONNX gives the flexibility to serve your model in a framework-agnostic environment.
Support includes [PyTorch,](https://pytorch.org/docs/stable/onnx.html) [TensorFlow,](https://github.com/onnx/tensorflow-onnx) [Keras,](https://github.com/onnx/keras-onnx) and [many other frameworks](https://github.com/onnx/onnxmltools).
## Installation
Install DeepSparse Community as follows:
```bash
pip install deepsparse
```
DeepSparse is available in two editions:
1. [**DeepSparse Community**](#installation) is open-source and free for evaluation, research, and non-production use with our [DeepSparse Community License](https://neuralmagic.com/legal/engine-license-agreement/).
2. [**DeepSparse Enterprise**](https://docs.neuralmagic.com/products/deepsparse-ent) requires a Trial License or [can be fully licensed](https://neuralmagic.com/legal/master-software-license-and-service-agreement/) for production, commercial applications.
## 🧰 Hardware Support and System Requirements
To ensure that your CPU is compatible with DeepSparse, it is recommended to review the [Supported Hardware for DeepSparse](https://docs.neuralmagic.com/user-guides/deepsparse-engine/hardware-support) documentation.
To ensure that you get the best performance from DeepSparse, it has been thoroughly tested on Python versions 3.7-3.10, ONNX versions 1.5.0-1.12.0, ONNX opset version 11 or higher, and manylinux compliant systems. It is highly recommended to use a [virtual environment](https://docs.python.org/3/library/venv.html) when running DeepSparse. Please note that DeepSparse is only supported natively on Linux. For those using Mac or Windows, running Linux in a Docker or virtual machine is necessary to use DeepSparse.
## Features
- 👩💻 Pipelines for [NLP](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/transformers), [CV Classification](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/image_classification), [CV Detection](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/yolo), [CV Segmentation](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/yolact) and more!
- 🔌 [DeepSparse Server](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server)
- 📜 [DeepSparse Benchmark](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark)
- ☁️ [Cloud Deployments and Demos](https://github.com/neuralmagic/deepsparse/tree/main/examples)
### 👩💻 Pipelines
Pipelines are a high-level Python interface for running inference with DeepSparse across select tasks in NLP and CV:
| NLP | CV |
|-----------------------|---------------------------|
| Text Classification `"text_classification"` | Image Classification `"image_classification"` |
| Token Classification `"token_classification"` | Object Detection `"yolo"` |
| Sentiment Analysis `"sentiment_analysis"` | Instance Segmentation `"yolact"` |
| Question Answering `"question_answering"` | Keypoint Detection `"open_pif_paf"` |
| MultiLabel Text Classification `"text_classification"` | |
| Document Classification `"text_classification"` | |
| Zero-Shot Text Classification `"zero_shot_text_classification"` | |
**NLP Example** | Question Answering
```python
from deepsparse import Pipeline
qa_pipeline = Pipeline.create(
task="question-answering",
model_path="zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni",
)
inference = qa_pipeline(question="What's my name?", context="My name is Snorlax")
```
**CV Example** | Image Classification
```python
from deepsparse import Pipeline
cv_pipeline = Pipeline.create(
task='image_classification',
model_path='zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none',
)
input_image = "my_image.png"
inference = cv_pipeline(images=input_image)
```
### 🔌 DeepSparse Server
DeepSparse Server is a tool that enables you to serve your models and pipelines directly from your terminal.
The server is built on top of two powerful libraries: the FastAPI web framework and the Uvicorn web server. This combination ensures that DeepSparse Server delivers excellent performance and reliability. Install with this command:
```bash
pip install deepsparse[server]
```
#### Single Model
Once installed, the following example CLI command is available for running inference with a single BERT model:
```bash
deepsparse.server \
task question_answering \
--model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"
```
To look up arguments run: `deepsparse.server --help`.
#### Multiple Models
To deploy multiple models in your setup, a `config.yaml` file should be created. In the example provided, two BERT models are configured for the question-answering task:
```yaml
num_workers: 1
endpoints:
- task: question_answering
route: /predict/question_answering/base
model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none
batch_size: 1
- task: question_answering
route: /predict/question_answering/pruned_quant
model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
batch_size: 1
```
After the `config.yaml` file has been created, the server can be started by passing the file path as an argument:
```bash
deepsparse.server config config.yaml
```
Read the [DeepSparse Server](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server) README for further details.
### 📜 DeepSparse Benchmark
DeepSparse Benchmark, a command-line (CLI) tool, is used to evaluate the DeepSparse Engine's performance with ONNX models. This tool processes arguments, downloads and compiles the network into the engine, creates input tensors, and runs the model based on the selected scenario.
Run `deepsparse.benchmark -h` to look up arguments:
```shell
deepsparse.benchmark [-h] [-b BATCH_SIZE] [-i INPUT_SHAPES] [-ncores NUM_CORES] [-s {async,sync,elastic}] [-t TIME]
[-w WARMUP_TIME] [-nstreams NUM_STREAMS] [-pin {none,core,numa}] [-e ENGINE] [-q] [-x EXPORT_PATH]
model_path
```
Refer to the [Benchmark](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark) README for examples of specific inference scenarios.
### 🦉 Custom ONNX Model Support
DeepSparse is capable of accepting ONNX models from two sources:
**SparseZoo ONNX**: This is an open-source repository of sparse models available for download. [SparseZoo](https://github.com/neuralmagic/sparsezoo) offers inference-optimized models, which are trained using repeatable sparsification recipes and state-of-the-art techniques from [SparseML](https://github.com/neuralmagic/sparseml).
**Custom ONNX**: Users can provide their own ONNX models, whether dense or sparse. By plugging in a custom model, users can compare its performance with other solutions.
```bash
> wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx
Saving to: ‘mobilenetv2-7.onnx’
```
Custom ONNX Benchmark example:
```python
from deepsparse import compile_model
from deepsparse.utils import generate_random_inputs
onnx_filepath = "mobilenetv2-7.onnx"
batch_size = 16
# Generate random sample input
inputs = generate_random_inputs(onnx_filepath, batch_size)
# Compile and run
engine = compile_model(onnx_filepath, batch_size)
outputs = engine.run(inputs)
```
The [GitHub repository](https://github.com/neuralmagic/deepsparse) repository contains package APIs and examples that help users swiftly begin benchmarking and performing inference on sparse models.
### Scheduling Single-Stream, Multi-Stream, and Elastic Inference
DeepSparse offers different inference scenarios based on your use case. Read more details here: [Inference Types](https://github.com/neuralmagic/deepsparse/blob/main/docs/source/scheduler.md).
⚡ **Single-stream** scheduling: the latency/synchronous scenario, requests execute serially. [`default`]
<img src="https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/single-stream.png" alt="single stream diagram" />
It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.
⚡ **Multi-stream** scheduling: the throughput/asynchronous scenario, requests execute in parallel.
<img src="https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/multi-stream.png" alt="multi stream diagram" />
The most common use cases for the multi-stream scheduler are where parallelism is low with respect to core count, and where requests need to be made asynchronously without time to batch them.
## Resources
#### Libraries
- [DeepSparse](https://docs.neuralmagic.com/deepsparse/)
- [SparseML](https://docs.neuralmagic.com/sparseml/)
- [SparseZoo](https://docs.neuralmagic.com/sparsezoo/)
- [Sparsify](https://docs.neuralmagic.com/sparsify/)
#### Versions
- [DeepSparse](https://pypi.org/project/deepsparse) | stable
- [DeepSparse-Nightly](https://pypi.org/project/deepsparse-nightly/) | nightly (dev)
- [GitHub](https://github.com/neuralmagic/deepsparse/releases) | releases
#### Info
- [Blog](https://www.neuralmagic.com/blog/)
- [Resources](https://www.neuralmagic.com/resources/)
## Community
### Be Part of the Future... And the Future is Sparse!
Contribute with code, examples, integrations, and documentation as well as bug reports and feature requests! [Learn how here.](https://github.com/neuralmagic/deepsparse/blob/main/CONTRIBUTING.md)
For user help or questions about DeepSparse, sign up or log in to our **[Deep Sparse Community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)**. We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our [GitHub Issue Queue.](https://github.com/neuralmagic/deepsparse/issues) You can get the latest news, webinar and event invites, research papers, and other ML Performance tidbits by [subscribing](https://neuralmagic.com/subscribe/) to the Neural Magic community.
For more general questions about Neural Magic, complete this [form.](http://neuralmagic.com/contact/)
### License
[DeepSparse Community](https://docs.neuralmagic.com/products/deepsparse) is licensed under the [Neural Magic DeepSparse Community License.](https://github.com/neuralmagic/deepsparse/blob/main/LICENSE-NEURALMAGIC)
Some source code, example files, and scripts included in the deepsparse GitHub repository or directory are licensed under the [Apache License Version 2.0](https://github.com/neuralmagic/deepsparse/blob/main/LICENSE) as noted.
[DeepSparse Enterprise](https://docs.neuralmagic.com/products/deepsparse-ent) requires a Trial License or [can be fully licensed](https://neuralmagic.com/legal/master-software-license-and-service-agreement/) for production, commercial applications.
### Cite
Find this project useful in your research or other communications? Please consider citing:
```bibtex
@InProceedings{
pmlr-v119-kurtz20a,
title = {Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural Networks},
author = {Kurtz, Mark and Kopinsky, Justin and Gelashvili, Rati and Matveev, Alexander and Carr, John and Goin, Michael and Leiserson, William and Moore, Sage and Nell, Bill and Shavit, Nir and Alistarh, Dan},
booktitle = {Proceedings of the 37th International Conference on Machine Learning},
pages = {5533--5543},
year = {2020},
editor = {Hal Daumé III and Aarti Singh},
volume = {119},
series = {Proceedings of Machine Learning Research},
address = {Virtual},
month = {13--18 Jul},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf},
url = {http://proceedings.mlr.press/v119/kurtz20a.html}
}
@article{DBLP:journals/corr/abs-2111-13445,
author = {Eugenia Iofinova and
Alexandra Peste and
Mark Kurtz and
Dan Alistarh},
title = {How Well Do Sparse Imagenet Models Transfer?},
journal = {CoRR},
volume = {abs/2111.13445},
year = {2021},
url = {https://arxiv.org/abs/2111.13445},
eprinttype = {arXiv},
eprint = {2111.13445},
timestamp = {Wed, 01 Dec 2021 15:16:43 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-13445.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
%prep
%autosetup -n deepsparse-1.5.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-deepsparse -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.5.0-1
- Package Spec generated
|