diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-05 03:35:55 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 03:35:55 +0000 |
commit | cc06524ebda1046ddfe36c03f15dc69f50b5efe7 (patch) | |
tree | 2ad21986e8854bbb0a1a9b5aa4a0f46060fd815c | |
parent | 80250045250abd58a76f0a18a8866f5b4e97d2e0 (diff) |
automatic import of python-dicomrttoolopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-dicomrttool.spec | 221 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 223 insertions, 0 deletions
@@ -0,0 +1 @@ +/DicomRTTool-2.0.8.tar.gz diff --git a/python-dicomrttool.spec b/python-dicomrttool.spec new file mode 100644 index 0000000..df095bc --- /dev/null +++ b/python-dicomrttool.spec @@ -0,0 +1,221 @@ +%global _empty_manifest_terminate_build 0 +Name: python-DicomRTTool +Version: 2.0.8 +Release: 1 +Summary: Services for reading dicom files, RT structures, and dose files, as well as tools for converting numpy prediction masks back to an RT structure +License: GNU Affero General Public License v3 +URL: https://github.com/brianmanderson/Dicom_RT_and_Images_to_Mask +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/fd/68/778eac11a2991c66bb6e23ff80cf5b91717b125d0d282c016b868640d7cb/DicomRTTool-2.0.8.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-matplotlib +Requires: python3-opencv-python +Requires: python3-openpyxl +Requires: python3-pandas +Requires: python3-Pillow +Requires: python3-pydicom +Requires: python3-scikit-image +Requires: python3-scipy +Requires: python3-SimpleITK +Requires: python3-six +Requires: python3-xlrd +Requires: python3-check-manifest +Requires: python3-tqdm +Requires: python3-pytest +Requires: python3-PlotScrollNumpyArrays +Requires: python3-setuptools + +%description +# We're published! Please check out the Technical Note here: https://www.sciencedirect.com/science/article/abs/pii/S1879850021000485 and reference this work if you find it useful +### DOI:https://doi.org/10.1016/j.prro.2021.02.003 + +## This code provides functionality for turning dicom images and RT structures into nifti files as well as turning prediction masks back into RT structures +## Installation guide + pip install DicomRTTool +### Highly recommend to go through the jupyter notebook in the Examples folder and to read the Wiki + +### Quick use guide + from DicomRTTool.ReaderWriter import DicomReaderWriter, ROIAssociationClass + Dicom_path = r'.some_path_to_dicom' + Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True) + Dicom_reader.walk_through_folders(Dicom_path) # This will parse through all DICOM present in the folder and subfolders + all_rois = Dicom_reader.return_rois(print_rois=True) # Return a list of all rois present + + Contour_names = ['tumor'] # Define what rois you want + associations = [ROIAssociationClass('tumor', ['tumor_mr', 'tumor_ct'])] # Any list of roi associations + Dicom_reader.set_contour_names_and_assocations(contour_names=Contour_names, associations=associations) + + Dicom_reader.get_images_and_mask() + + image_numpy = Dicom_reader.ArrayDicom + mask_numpy = Dicom_reader.mask + image_sitk_handle = Dicom_reader.dicom_handle + mask_sitk_handle = Dicom_reader.annotation_handle + +### Other interesting additions +### Adding information to the Dicom_reader.series_instances_dictionary + from DicomRTTool.ReaderWriter import Tag + plan_pydicom_string_keys = {"MyNamedRTPlan": Tag((0x300a, 0x002))} + image_sitk_string_keys = {"MyPatientName": "0010|0010"} + Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True, plan_pydicom_string_keys=plan_pydicom_string_keys, image_sitk_string_keys=image_sitk_string_keys) + + +##### If you find this code useful, please provide a reference to my github page for others www.github.com/brianmanderson , thank you! + +###### Ring update allows for multiple rings to be represented correctly + + + + +#### Works on oblique images for masks and predictions* + + + + +%package -n python3-DicomRTTool +Summary: Services for reading dicom files, RT structures, and dose files, as well as tools for converting numpy prediction masks back to an RT structure +Provides: python-DicomRTTool +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-DicomRTTool +# We're published! Please check out the Technical Note here: https://www.sciencedirect.com/science/article/abs/pii/S1879850021000485 and reference this work if you find it useful +### DOI:https://doi.org/10.1016/j.prro.2021.02.003 + +## This code provides functionality for turning dicom images and RT structures into nifti files as well as turning prediction masks back into RT structures +## Installation guide + pip install DicomRTTool +### Highly recommend to go through the jupyter notebook in the Examples folder and to read the Wiki + +### Quick use guide + from DicomRTTool.ReaderWriter import DicomReaderWriter, ROIAssociationClass + Dicom_path = r'.some_path_to_dicom' + Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True) + Dicom_reader.walk_through_folders(Dicom_path) # This will parse through all DICOM present in the folder and subfolders + all_rois = Dicom_reader.return_rois(print_rois=True) # Return a list of all rois present + + Contour_names = ['tumor'] # Define what rois you want + associations = [ROIAssociationClass('tumor', ['tumor_mr', 'tumor_ct'])] # Any list of roi associations + Dicom_reader.set_contour_names_and_assocations(contour_names=Contour_names, associations=associations) + + Dicom_reader.get_images_and_mask() + + image_numpy = Dicom_reader.ArrayDicom + mask_numpy = Dicom_reader.mask + image_sitk_handle = Dicom_reader.dicom_handle + mask_sitk_handle = Dicom_reader.annotation_handle + +### Other interesting additions +### Adding information to the Dicom_reader.series_instances_dictionary + from DicomRTTool.ReaderWriter import Tag + plan_pydicom_string_keys = {"MyNamedRTPlan": Tag((0x300a, 0x002))} + image_sitk_string_keys = {"MyPatientName": "0010|0010"} + Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True, plan_pydicom_string_keys=plan_pydicom_string_keys, image_sitk_string_keys=image_sitk_string_keys) + + +##### If you find this code useful, please provide a reference to my github page for others www.github.com/brianmanderson , thank you! + +###### Ring update allows for multiple rings to be represented correctly + + + + +#### Works on oblique images for masks and predictions* + + + + +%package help +Summary: Development documents and examples for DicomRTTool +Provides: python3-DicomRTTool-doc +%description help +# We're published! Please check out the Technical Note here: https://www.sciencedirect.com/science/article/abs/pii/S1879850021000485 and reference this work if you find it useful +### DOI:https://doi.org/10.1016/j.prro.2021.02.003 + +## This code provides functionality for turning dicom images and RT structures into nifti files as well as turning prediction masks back into RT structures +## Installation guide + pip install DicomRTTool +### Highly recommend to go through the jupyter notebook in the Examples folder and to read the Wiki + +### Quick use guide + from DicomRTTool.ReaderWriter import DicomReaderWriter, ROIAssociationClass + Dicom_path = r'.some_path_to_dicom' + Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True) + Dicom_reader.walk_through_folders(Dicom_path) # This will parse through all DICOM present in the folder and subfolders + all_rois = Dicom_reader.return_rois(print_rois=True) # Return a list of all rois present + + Contour_names = ['tumor'] # Define what rois you want + associations = [ROIAssociationClass('tumor', ['tumor_mr', 'tumor_ct'])] # Any list of roi associations + Dicom_reader.set_contour_names_and_assocations(contour_names=Contour_names, associations=associations) + + Dicom_reader.get_images_and_mask() + + image_numpy = Dicom_reader.ArrayDicom + mask_numpy = Dicom_reader.mask + image_sitk_handle = Dicom_reader.dicom_handle + mask_sitk_handle = Dicom_reader.annotation_handle + +### Other interesting additions +### Adding information to the Dicom_reader.series_instances_dictionary + from DicomRTTool.ReaderWriter import Tag + plan_pydicom_string_keys = {"MyNamedRTPlan": Tag((0x300a, 0x002))} + image_sitk_string_keys = {"MyPatientName": "0010|0010"} + Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True, plan_pydicom_string_keys=plan_pydicom_string_keys, image_sitk_string_keys=image_sitk_string_keys) + + +##### If you find this code useful, please provide a reference to my github page for others www.github.com/brianmanderson , thank you! + +###### Ring update allows for multiple rings to be represented correctly + + + + +#### Works on oblique images for masks and predictions* + + + + +%prep +%autosetup -n DicomRTTool-2.0.8 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-DicomRTTool -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.8-1 +- Package Spec generated @@ -0,0 +1 @@ +a536a457e191254c16c10bae0b507342 DicomRTTool-2.0.8.tar.gz |