1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
|
%global _empty_manifest_terminate_build 0
Name: python-diego
Version: 0.2.7
Release: 1
Summary: Diego: Data IntElliGence Out.
License: MIT
URL: https://github.com/lai-bluejay/diego
Source0: https://mirrors.aliyun.com/pypi/web/packages/61/b7/9f7bff11aeec39d4af912194c650107660e4a5ddbc3dee7d7fc65a799207/diego-0.2.7.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-scikit-learn
Requires: python3-deap
Requires: python3-update-checker
Requires: python3-tqdm
Requires: python3-stopit
Requires: python3-pandas
Requires: python3-xgboost
Requires: python3-pyrfr
Requires: python3-distributed
Requires: python3-dask
Requires: python3-smac
Requires: python3-ConfigSpace
Requires: python3-auto-sklearn
Requires: python3-liac-arff
Requires: python3-sklearn-contrib-lightning
%description
# Diego
Diego: Data in, IntElliGence Out.
[简体中文](README_zh_CN.md)
A fast framework that supports the rapid construction of automated learning tasks. Simply create an automated learning study (`Study`) and generate correlated trials (`Trial`). Then run the code and get a machine learning model. Implemented using Scikit-learn API [glossary](https://scikit-learn.org/stable/glossary.html), using Bayesian optimization and genetic algorithms for automated machine learning.
Inspired by [Fast.ai](https://github.com/fastai/fastai) and [MicroSoft nni](https://github.com/Microsoft/nni).
[](https://travis-ci.org/lai-bluejay/diego)



- [x] the classifier trained by a Study.
- [x] AutoML classifier with support for scikit-learn api. Support for exporting models and use them directly.
- [x] Hyperparametric optimization using Bayesian optimization and genetic algorithms
- [x] Supports bucketing/binning algorithm and LUS sampling method for preprocessing
- [ ] Supports scikit-learn api classifier custom classifier for parameter search and super parameter optimization
## Installation
You need to install swig first, and some rely on C/C++ interface compilation. Recommended to use conda installation
```shell
conda install --yes pip gcc swig libgcc=5.2.0
pip install diego
```
After installation, start with 6 lines of code to solve a machine learning classification problem.
## Usage
Each task is considered to be a `Study`, and each Study consists of multiple `Trial`.
It is recommended to create a Study first and then generate a Trial from the Study:
```python
from diego.study import create_study
import sklearn.datasets
digits = sklearn.datasets.load_digits()
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(digits.data, digits.target,train_size=0.75, test_size=0.25)
s = create_study(X_train, y_train)
# can use default trials in Study
# or generate one
# s.generate_trials(mode='fast')
s.optimize(X_test, y_test)
# all_trials = s.get_all_trials()
# for t in all_trials:
# print(t.__dict__)
# print(t.clf.score(X_test, y_test))
```
## RoadMap
ideas for releases in the future
- [ ] 回归。
- [ ] add documents.
- [ ] 不同类型的Trial。TPE, BayesOpt, RandomSearch
- [ ] 自定义的Trial。Trials by custom Classifier (like sklearn, xgboost)
- [ ] 模型保存。model persistence
- [ ] 模型输出。model output
- [ ] basic Classifier
- [ ] fix mac os hanged in optimize pipeline
- [ ] add preprocessor
- [ ] add FeatureTools for automated feature engineering
##
## Project Structure
### study, trials
Study:
Trial:
### 如果在OS X或者Linux多进程被 hang/crash/freeze
Since n_jobs>1 may get stuck during parallelization. Similar problems may occur in [scikit-learn] (https://scikit-learn.org/stable/faq.html#why-do-i-sometime-get-a-crash-freeze-with-n -jobs-1-under-osx-or-linux)
In Python 3.4+, one solution is to directly configure `multiprocessing` to use `forkserver` or `spawn` to start process pool management (instead of the default `fork`). For example, the `forkserver` mode is enabled globally directly in the code.
```python
import multiprocessing
# other imports, custom code, load data, define model...
if __name__ == '__main__':
multiprocessing.set_start_method('forkserver')
# call scikit-learn utils with n_jobs > 1 here
```
more info :[multiprocessing document](https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods)
### core
#### storage
For each study, the data storage and parameters, and the model is additionally stored in the `Storage` object, which ensures that Study only controls trials, and each Trial updates the results in the storage after updating, and updates the best results.
#### update result
When creating `Study`, you need to specify the direction of optimization `maximize` or `minimize`. Also specify the metrics for optimization when creating `Trials`. The default is `maximize accuracy`.
## auto ml 补完计划
[overview](https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a)
### bayes opt
1. [fmfn/bayes](https://github.com/fmfn/BayesianOptimization)
2. [auto-sklearn](https://github.com/automl/auto-sklearn)
### grid search
1. H2O.ai
### tree parzen
1. hyperopt
2. mlbox
### metaheuristics grid search
1. pybrain
### generation
1.tpot
### dl
1. ms nni
## issues
## updates
### TODO 文档更新。
%package -n python3-diego
Summary: Diego: Data IntElliGence Out.
Provides: python-diego
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-diego
# Diego
Diego: Data in, IntElliGence Out.
[简体中文](README_zh_CN.md)
A fast framework that supports the rapid construction of automated learning tasks. Simply create an automated learning study (`Study`) and generate correlated trials (`Trial`). Then run the code and get a machine learning model. Implemented using Scikit-learn API [glossary](https://scikit-learn.org/stable/glossary.html), using Bayesian optimization and genetic algorithms for automated machine learning.
Inspired by [Fast.ai](https://github.com/fastai/fastai) and [MicroSoft nni](https://github.com/Microsoft/nni).
[](https://travis-ci.org/lai-bluejay/diego)



- [x] the classifier trained by a Study.
- [x] AutoML classifier with support for scikit-learn api. Support for exporting models and use them directly.
- [x] Hyperparametric optimization using Bayesian optimization and genetic algorithms
- [x] Supports bucketing/binning algorithm and LUS sampling method for preprocessing
- [ ] Supports scikit-learn api classifier custom classifier for parameter search and super parameter optimization
## Installation
You need to install swig first, and some rely on C/C++ interface compilation. Recommended to use conda installation
```shell
conda install --yes pip gcc swig libgcc=5.2.0
pip install diego
```
After installation, start with 6 lines of code to solve a machine learning classification problem.
## Usage
Each task is considered to be a `Study`, and each Study consists of multiple `Trial`.
It is recommended to create a Study first and then generate a Trial from the Study:
```python
from diego.study import create_study
import sklearn.datasets
digits = sklearn.datasets.load_digits()
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(digits.data, digits.target,train_size=0.75, test_size=0.25)
s = create_study(X_train, y_train)
# can use default trials in Study
# or generate one
# s.generate_trials(mode='fast')
s.optimize(X_test, y_test)
# all_trials = s.get_all_trials()
# for t in all_trials:
# print(t.__dict__)
# print(t.clf.score(X_test, y_test))
```
## RoadMap
ideas for releases in the future
- [ ] 回归。
- [ ] add documents.
- [ ] 不同类型的Trial。TPE, BayesOpt, RandomSearch
- [ ] 自定义的Trial。Trials by custom Classifier (like sklearn, xgboost)
- [ ] 模型保存。model persistence
- [ ] 模型输出。model output
- [ ] basic Classifier
- [ ] fix mac os hanged in optimize pipeline
- [ ] add preprocessor
- [ ] add FeatureTools for automated feature engineering
##
## Project Structure
### study, trials
Study:
Trial:
### 如果在OS X或者Linux多进程被 hang/crash/freeze
Since n_jobs>1 may get stuck during parallelization. Similar problems may occur in [scikit-learn] (https://scikit-learn.org/stable/faq.html#why-do-i-sometime-get-a-crash-freeze-with-n -jobs-1-under-osx-or-linux)
In Python 3.4+, one solution is to directly configure `multiprocessing` to use `forkserver` or `spawn` to start process pool management (instead of the default `fork`). For example, the `forkserver` mode is enabled globally directly in the code.
```python
import multiprocessing
# other imports, custom code, load data, define model...
if __name__ == '__main__':
multiprocessing.set_start_method('forkserver')
# call scikit-learn utils with n_jobs > 1 here
```
more info :[multiprocessing document](https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods)
### core
#### storage
For each study, the data storage and parameters, and the model is additionally stored in the `Storage` object, which ensures that Study only controls trials, and each Trial updates the results in the storage after updating, and updates the best results.
#### update result
When creating `Study`, you need to specify the direction of optimization `maximize` or `minimize`. Also specify the metrics for optimization when creating `Trials`. The default is `maximize accuracy`.
## auto ml 补完计划
[overview](https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a)
### bayes opt
1. [fmfn/bayes](https://github.com/fmfn/BayesianOptimization)
2. [auto-sklearn](https://github.com/automl/auto-sklearn)
### grid search
1. H2O.ai
### tree parzen
1. hyperopt
2. mlbox
### metaheuristics grid search
1. pybrain
### generation
1.tpot
### dl
1. ms nni
## issues
## updates
### TODO 文档更新。
%package help
Summary: Development documents and examples for diego
Provides: python3-diego-doc
%description help
# Diego
Diego: Data in, IntElliGence Out.
[简体中文](README_zh_CN.md)
A fast framework that supports the rapid construction of automated learning tasks. Simply create an automated learning study (`Study`) and generate correlated trials (`Trial`). Then run the code and get a machine learning model. Implemented using Scikit-learn API [glossary](https://scikit-learn.org/stable/glossary.html), using Bayesian optimization and genetic algorithms for automated machine learning.
Inspired by [Fast.ai](https://github.com/fastai/fastai) and [MicroSoft nni](https://github.com/Microsoft/nni).
[](https://travis-ci.org/lai-bluejay/diego)



- [x] the classifier trained by a Study.
- [x] AutoML classifier with support for scikit-learn api. Support for exporting models and use them directly.
- [x] Hyperparametric optimization using Bayesian optimization and genetic algorithms
- [x] Supports bucketing/binning algorithm and LUS sampling method for preprocessing
- [ ] Supports scikit-learn api classifier custom classifier for parameter search and super parameter optimization
## Installation
You need to install swig first, and some rely on C/C++ interface compilation. Recommended to use conda installation
```shell
conda install --yes pip gcc swig libgcc=5.2.0
pip install diego
```
After installation, start with 6 lines of code to solve a machine learning classification problem.
## Usage
Each task is considered to be a `Study`, and each Study consists of multiple `Trial`.
It is recommended to create a Study first and then generate a Trial from the Study:
```python
from diego.study import create_study
import sklearn.datasets
digits = sklearn.datasets.load_digits()
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(digits.data, digits.target,train_size=0.75, test_size=0.25)
s = create_study(X_train, y_train)
# can use default trials in Study
# or generate one
# s.generate_trials(mode='fast')
s.optimize(X_test, y_test)
# all_trials = s.get_all_trials()
# for t in all_trials:
# print(t.__dict__)
# print(t.clf.score(X_test, y_test))
```
## RoadMap
ideas for releases in the future
- [ ] 回归。
- [ ] add documents.
- [ ] 不同类型的Trial。TPE, BayesOpt, RandomSearch
- [ ] 自定义的Trial。Trials by custom Classifier (like sklearn, xgboost)
- [ ] 模型保存。model persistence
- [ ] 模型输出。model output
- [ ] basic Classifier
- [ ] fix mac os hanged in optimize pipeline
- [ ] add preprocessor
- [ ] add FeatureTools for automated feature engineering
##
## Project Structure
### study, trials
Study:
Trial:
### 如果在OS X或者Linux多进程被 hang/crash/freeze
Since n_jobs>1 may get stuck during parallelization. Similar problems may occur in [scikit-learn] (https://scikit-learn.org/stable/faq.html#why-do-i-sometime-get-a-crash-freeze-with-n -jobs-1-under-osx-or-linux)
In Python 3.4+, one solution is to directly configure `multiprocessing` to use `forkserver` or `spawn` to start process pool management (instead of the default `fork`). For example, the `forkserver` mode is enabled globally directly in the code.
```python
import multiprocessing
# other imports, custom code, load data, define model...
if __name__ == '__main__':
multiprocessing.set_start_method('forkserver')
# call scikit-learn utils with n_jobs > 1 here
```
more info :[multiprocessing document](https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods)
### core
#### storage
For each study, the data storage and parameters, and the model is additionally stored in the `Storage` object, which ensures that Study only controls trials, and each Trial updates the results in the storage after updating, and updates the best results.
#### update result
When creating `Study`, you need to specify the direction of optimization `maximize` or `minimize`. Also specify the metrics for optimization when creating `Trials`. The default is `maximize accuracy`.
## auto ml 补完计划
[overview](https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a)
### bayes opt
1. [fmfn/bayes](https://github.com/fmfn/BayesianOptimization)
2. [auto-sklearn](https://github.com/automl/auto-sklearn)
### grid search
1. H2O.ai
### tree parzen
1. hyperopt
2. mlbox
### metaheuristics grid search
1. pybrain
### generation
1.tpot
### dl
1. ms nni
## issues
## updates
### TODO 文档更新。
%prep
%autosetup -n diego-0.2.7
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-diego -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.7-1
- Package Spec generated
|