1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
|
%global _empty_manifest_terminate_build 0
Name: python-dnn-cool
Version: 0.4.0
Release: 1
Summary: DNN.Cool: Multi-task learning for Deep Neural Networks (DNN).
License: MIT
URL: https://github.com/hristo-vrigazov/dnn.cool
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b6/d7/7897f57c34e468a48f01fc91fa16ffb786802192b606ce37a03855621e95/dnn_cool-0.4.0.tar.gz
BuildArch: noarch
%description
## `dnn_cool`: Deep Neural Networks for Conditional objective oriented learning
WARNING: API is not yet stable, expect breaking changes in 0.x versions!
To install, just do:
```bash
pip install dnn_cool
```
* [Introduction](#introduction): What is `dnn_cool` in a nutshell?
* [Examples](#examples): a simple step-by-step example.
* [Features](#features): a list of the utilities that `dnn_cool` provides for you
* [Customization](#customization): Learn how to add new tasks, modify them, etc.
* [Inspiration](#inspiration): list of papers and videos which inspired this library
To see the predefined tasks for this release, see [list of predefined tasks](#list-of-predefined-tasks)
### Introduction
A framework for multi-task learning in Pytorch, where you may precondition tasks and compose them into bigger tasks.
Many complex neural networks can be trivially implemented with `dnn_cool`.
For example, creating a neural network that does classification and localization is as simple as:
```python
@project.add_flow
def localize_flow(flow, x, out):
out += flow.obj_exists(x.features)
out += flow.obj_x(x.features) | out.obj_exists
out += flow.obj_y(x.features) | out.obj_exists
out += flow.obj_w(x.features) | out.obj_exists
out += flow.obj_h(x.features) | out.obj_exists
out += flow.obj_class(x.features) | out.obj_exists
return out
```
If for example you want to classify first if the camera is blocked and then do localization **given that the camera
is not blocked**, you could do:
```python
@project.add_flow
def full_flow(flow, x, out):
out += flow.camera_blocked(x.cam_features)
out += flow.localize_flow(x.localization_features) | (~out.camera_blocked)
return out
```
Based on these "task flows" as we call them, `dnn_cool` provides a bunch of [features](#features).
Currently, this is the list of the predefined tasks (they are all located in `dnn_cool.task_flow`):
##### List of predefined tasks
In the current release, the following tasks are available out of the box:
* `BinaryClassificationTask` - sigmoid activation, thresholding decoder, binary cross entropy loss function. In the
examples above, `camera_blocked` and `obj_exists` are `BinaryClassificationTask`s.
* `ClassificationTask` - softmax activation, sorting classes decoder, categorical cross entropy loss. In the example
above, `obj_class` is a `ClassificationTask`
* `MultilabelClassificationTask` - sigmoid activation, thresholding decoder, binary cross entropy loss function.
* `BoundedRegressionTask` - sigmoid activation, rescaling decoder, mean squared error loss function. In the examples
above, `obj_x`, `obj_y`, `obj_w`, `obj_h` are bounded regression tasks.
* `MaskedLanguageModelingTask` - softmax activation, sorting decoder, cross entropy per token loss.
* `TaskFlow` - a composite task, that contains a list of children tasks. We saw 2 task flows above.
### Examples
#### Quick Imagenet example
We just have to add a `ClassificationTask` named `classifier` and add the flow below:
```python
@project.add_flow()
def imagenet_model(flow, x, out):
out += flow.classifier(x.features)
return out
```
That's great! But what if there is not an object always? Then we have to first check if an object exists. Let's
add a `BinaryClassificationTask` and use it as a precondition to classifier.
```python
@project.add_flow()
def imagenet_model(flow, x, out):
out += flow.object_exists(x.features)
out += flow.classifier(x.features) | out.object_exists
return out
```
But what if we also want to localize the object? Then we have to add new tasks that regress the bounding box. Let's
call them `object_x`, `object_y`, `object_w`, `object_h` and make them a `BoundedRegressionTask`. To avoid
preconditioning all tasks on `object_exists`, let's group them first. Then we modify the
flow:
```python
@project.add_flow()
def object_flow(flow, x, out):
out += flow.classifier(x.features)
out += flow.object_x(x.features)
out += flow.object_y(x.features)
out += flow.object_w(x.features)
out += flow.object_h(x.features)
return out
@project.add_flow()
def imagenet_flow(flow, x, out):
out += flow.object_exists(x.features)
out += flow.object_flow(x.features) | out.object_exists
return out
```
But what if the camera is blocked? Then there is no need to do anything, so let's create a new flow
that executes our `imagenet_flow` only when the camera is not blocked.
```python
def full_flow(flow, x, out):
out += flow.camera_blocked(x.features)
out += flow.imagenet_flow(x.features) | (~out.camera_blocked)
return out
```
But what if for example we want to check if the object is a kite, and if it is, to classify its color?
Then we would have to modify our `object_flow` as follows:
```python
@project.add_flow()
def object_flow(flow, x, out):
out += flow.classifier(x.features)
out += flow.object_x(x.features)
out += flow.object_y(x.features)
out += flow.object_w(x.features)
out += flow.object_h(x.features)
out += flow.is_kite(x.features)
out += flow.color(x.features) | out.is_kite
return out
```
I think you can see what `dnn_cool` is meant to do! :)
To see a full walkthrough on a synthetic dataset, check out the [Colab notebook](https://colab.research.google.com/drive/1fEidcOszTI9JXptbuU5GGC-O_yxb6hxO?usp=sharing)
or the [markdown write-up](./story.md).
### Features
Main features are:
* [Task precondition](#task-preconditioning)
* [Missing values handling](#missing-values)
* [Task composition](#task-composition)
* [Tensorboard metrics logging](#tensorboard-logging)
* [Task interpretations](#task-interpretation)
* [Task evaluation](#task-evaluation)
* [Task threshold tuning](#task-threshold-tuning)
* [Dataset generation](#dataset-generation)
* [Tree explanations](#tree-explanations)
* [Memory balancing for dataparallel](#memory-balancing)
##### Task preconditioning
Use the `|` for task preconditioning (think of `P(A|B)` notation). Preconditioning - ` A | B` means that:
* Include the ground truth for `B` in the input batch when training
* When training, update the weights of the `A` only when `B` is satisfied in the ground truth.
* When training, compute the loss function for `A` only when `B` is satisfied in the ground truth
* When training, compute the metrics for `A` only when `B` is satisfied in the ground truth.
* When tuning threshold for `A`, optimize only on values for which `B` is satisfied in the ground truth.
* When doing inference, compute the metrics for `A` only when the precondition is satisfied according to the decoded
result of the `B` task
* When generating tree explanation in inference mode, do not show the branch for `A` if `B` is not
satisfied.
* When computing results interpretation, include only loss terms when the precondition is satisfied.
Usually, you have to keep track of all this stuff manually, which makes adding new preconditions very difficult.
`dnn_cool` makes this stuff easy, so that you can chain a long list of preconditions without worrying you forgot
something.
##### Missing values
Sometimes for an input you don't have labels for all tasks. With `dnn_cool`, you can just mark the missing label and
`dnn_cool` will update only the weights of the tasks for which labels are available.
This feature has the awesome property that you don't need a single dataset with all tasks labeled, you can
have different datasets for different tasks and it will work. For example, you can train a single object detection
neural network that trains its classifier head on ImageNet, and its detection head on COCO.
##### Task composition
You can group tasks in a task flow (we already saw 2 above - `localize_flow` and `full_flow`). You can use this to
organize things better, for example when you want to precondition a whole task flow. For example:
```python
@project.add_flow
def face_regression(flow, x, out):
out += flow.face_x1(x.face_localization)
out += flow.face_y1(x.face_localization)
out += flow.face_w(x.face_localization)
out += flow.face_h(x.face_localization)
out += flow.facial_characteristics(x.features)
return out
```
##### Tensorboard logging
`dnn_cool` logs the metrics per task in Tensorboard, e.g:

##### Task interpretation
Also, the best and worst inputs per task are logged in the Tensorboard, for example if the input is an image:

##### Task evaluation
Per-task evaluation information is available, to pinpoint the exact problem in your network. An example
evaluation dataframe:
| | task_path | metric_name | metric_res | num_samples |
|---:|:---------------------------------------------------------|:--------------------|-------------:|--------------:|
| 0 | camera_blocked | accuracy | 0.980326 | 996 |
| 1 | camera_blocked | f1_score | 0.974368 | 996 |
| 2 | camera_blocked | precision | 0.946635 | 996 |
| 3 | camera_blocked | recall | 0.960107 | 996 |
| 4 | door_open | accuracy | 0.921215 | 902 |
| 5 | door_open | f1_score | 0.966859 | 902 |
| 6 | door_open | precision | 0.976749 | 902 |
| 7 | door_open | recall | 0.939038 | 902 |
| 8 | door_locked | accuracy | 0.983039 | 201 |
| 9 | door_locked | f1_score | 0.948372 | 201 |
| 10 | door_locked | precision | 0.982583 | 201 |
| 11 | door_locked | recall | 0.934788 | 201 |
| 12 | person_present | accuracy | 0.999166 | 701 |
| 13 | person_present | f1_score | 0.937541 | 701 |
| 14 | person_present | precision | 0.927337 | 701 |
| 15 | person_present | recall | 0.963428 | 701 |
| 16 | person_regression.face_regression.face_x1 | mean_absolute_error | 0.0137292 | 611 |
| 17 | person_regression.face_regression.face_y1 | mean_absolute_error | 0.0232761 | 611 |
| 18 | person_regression.face_regression.face_w | mean_absolute_error | 0.00740503 | 611 |
| 19 | person_regression.face_regression.face_h | mean_absolute_error | 0.0101 | 611 |
| 20 | person_regression.face_regression.facial_characteristics | accuracy | 0.932624 | 611 |
| 21 | person_regression.body_regression.body_x1 | mean_absolute_error | 0.00830785 | 611 |
| 22 | person_regression.body_regression.body_y1 | mean_absolute_error | 0.0151234 | 611 |
| 23 | person_regression.body_regression.body_w | mean_absolute_error | 0.0130214 | 611 |
| 24 | person_regression.body_regression.body_h | mean_absolute_error | 0.0101 | 611 |
| 25 | person_regression.body_regression.shirt_type | accuracy_1 | 0.979934 | 611 |
| 26 | person_regression.body_regression.shirt_type | accuracy_3 | 0.993334 | 611 |
| 27 | person_regression.body_regression.shirt_type | accuracy_5 | 0.990526 | 611 |
| 28 | person_regression.body_regression.shirt_type | f1_score | 0.928516 | 611 |
| 29 | person_regression.body_regression.shirt_type | precision | 0.959826 | 611 |
| 30 | person_regression.body_regression.shirt_type | recall | 0.968146 | 611 |
##### Task threshold tuning
Many tasks need to tune their threshold. Just call `flow.get_decoder().tune()` and you will get optimized thresholds
for the metric you define.
##### Dataset generation
As noted above, `dnn_cool` will automatically trace the tasks used as a precondition and include the ground truth for
them under the key `gt`.
##### Tree explanations
Examples:
```
├── inp 1
│ └── camera_blocked | decoded: [False], activated: [0.], logits: [-117.757324]
│ └── door_open | decoded: [ True], activated: [1.], logits: [41.11258]
│ └── person_present | decoded: [ True], activated: [1.], logits: [60.38873]
│ └── person_regression
│ ├── body_regression
│ │ ├── body_h | decoded: [29.672623], activated: [0.46363473], logits: [-0.14571853]
│ │ ├── body_w | decoded: [12.86382], activated: [0.20099719], logits: [-1.3800735]
│ │ ├── body_x1 | decoded: [21.34288], activated: [0.3334825], logits: [-0.69247603]
│ │ ├── body_y1 | decoded: [18.468979], activated: [0.2885778], logits: [-0.9023013]
│ │ └── shirt_type | decoded: [6 1 0 4 2 5 3], activated: [4.1331367e-23 3.5493638e-17 3.1328378e-26 5.6903808e-30 2.4471377e-25
2.8071076e-29 1.0000000e+00], logits: [-20.549513 -6.88627 -27.734364 -36.34787 -25.6788 -34.751904
30.990908]
│ └── face_regression
│ ├── face_h | decoded: [11.265154], activated: [0.17601803], logits: [-1.5435623]
│ ├── face_w | decoded: [12.225838], activated: [0.19102871], logits: [-1.4433397]
│ ├── face_x1 | decoded: [21.98834], activated: [0.34356782], logits: [-0.64743483]
│ ├── face_y1 | decoded: [3.2855165], activated: [0.0513362], logits: [-2.9166584]
│ └── facial_characteristics | decoded: [ True False True], activated: [9.9999940e-01 1.2074912e-12 9.9999833e-01], logits: [ 14.240071 -27.442476 13.27557 ]
```
but if the model thinks the camera is blocked, then the explanation would be:
```
├── inp 2
│ └── camera_blocked | decoded: [ True], activated: [1.], logits: [76.367676]
```
##### Memory balancing
When using [nn.DataParallel](https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html), the computation of
the loss function is done on the main GPU, which leads to dramatically unbalanced memory usage if your outputs are big
and you have a lot of metrics (e.g segmentation masks, language modeling, etc). `dnn_cool` gives you a
convenient way to balance the memory in such situations - just a single `balance_dataparallel_memory = True` handles
this case for you by first reducing all metrics on their respective device, and then additionally aggregating
the results that were reduced on each device automatically. Here's an example memory usage:
Before:

After:

### Customization
Since `flow.torch()` returns a normal `nn.Module`, you can use any library you are used to. If you use
[Catalyst](https://github.com/catalyst-team/catalyst), `dnn_cool` provides a bunch of useful callbacks. Creating
a new task is as simple as creating a new instance of this dataclass:
```python
@dataclass
class Task(ITask):
name: str
labels: Any
loss: nn.Module
per_sample_loss: nn.Module
available_func: Callable
inputs: Any
activation: Optional[nn.Module]
decoder: Decoder
module: nn.Module
metrics: Tuple[str, TorchMetric]
```
Alternatively, you can subclass `ITask` and implement its inferface.
### Inspiration
* [Andrej Karpathy: Tesla Autopilot and Multi-Task Learning for Perception and Prediction](https://www.youtube.com/watch?v=IHH47nZ7FZU)
* [PyTorch at Tesla - Andrej Karpathy, Tesla](https://www.youtube.com/watch?v=oBklltKXtDE)
* [Multitask learning - Andrew Ng](https://www.youtube.com/watch?v=UdXfsAr4Gjw)
%package -n python3-dnn-cool
Summary: DNN.Cool: Multi-task learning for Deep Neural Networks (DNN).
Provides: python-dnn-cool
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dnn-cool
## `dnn_cool`: Deep Neural Networks for Conditional objective oriented learning
WARNING: API is not yet stable, expect breaking changes in 0.x versions!
To install, just do:
```bash
pip install dnn_cool
```
* [Introduction](#introduction): What is `dnn_cool` in a nutshell?
* [Examples](#examples): a simple step-by-step example.
* [Features](#features): a list of the utilities that `dnn_cool` provides for you
* [Customization](#customization): Learn how to add new tasks, modify them, etc.
* [Inspiration](#inspiration): list of papers and videos which inspired this library
To see the predefined tasks for this release, see [list of predefined tasks](#list-of-predefined-tasks)
### Introduction
A framework for multi-task learning in Pytorch, where you may precondition tasks and compose them into bigger tasks.
Many complex neural networks can be trivially implemented with `dnn_cool`.
For example, creating a neural network that does classification and localization is as simple as:
```python
@project.add_flow
def localize_flow(flow, x, out):
out += flow.obj_exists(x.features)
out += flow.obj_x(x.features) | out.obj_exists
out += flow.obj_y(x.features) | out.obj_exists
out += flow.obj_w(x.features) | out.obj_exists
out += flow.obj_h(x.features) | out.obj_exists
out += flow.obj_class(x.features) | out.obj_exists
return out
```
If for example you want to classify first if the camera is blocked and then do localization **given that the camera
is not blocked**, you could do:
```python
@project.add_flow
def full_flow(flow, x, out):
out += flow.camera_blocked(x.cam_features)
out += flow.localize_flow(x.localization_features) | (~out.camera_blocked)
return out
```
Based on these "task flows" as we call them, `dnn_cool` provides a bunch of [features](#features).
Currently, this is the list of the predefined tasks (they are all located in `dnn_cool.task_flow`):
##### List of predefined tasks
In the current release, the following tasks are available out of the box:
* `BinaryClassificationTask` - sigmoid activation, thresholding decoder, binary cross entropy loss function. In the
examples above, `camera_blocked` and `obj_exists` are `BinaryClassificationTask`s.
* `ClassificationTask` - softmax activation, sorting classes decoder, categorical cross entropy loss. In the example
above, `obj_class` is a `ClassificationTask`
* `MultilabelClassificationTask` - sigmoid activation, thresholding decoder, binary cross entropy loss function.
* `BoundedRegressionTask` - sigmoid activation, rescaling decoder, mean squared error loss function. In the examples
above, `obj_x`, `obj_y`, `obj_w`, `obj_h` are bounded regression tasks.
* `MaskedLanguageModelingTask` - softmax activation, sorting decoder, cross entropy per token loss.
* `TaskFlow` - a composite task, that contains a list of children tasks. We saw 2 task flows above.
### Examples
#### Quick Imagenet example
We just have to add a `ClassificationTask` named `classifier` and add the flow below:
```python
@project.add_flow()
def imagenet_model(flow, x, out):
out += flow.classifier(x.features)
return out
```
That's great! But what if there is not an object always? Then we have to first check if an object exists. Let's
add a `BinaryClassificationTask` and use it as a precondition to classifier.
```python
@project.add_flow()
def imagenet_model(flow, x, out):
out += flow.object_exists(x.features)
out += flow.classifier(x.features) | out.object_exists
return out
```
But what if we also want to localize the object? Then we have to add new tasks that regress the bounding box. Let's
call them `object_x`, `object_y`, `object_w`, `object_h` and make them a `BoundedRegressionTask`. To avoid
preconditioning all tasks on `object_exists`, let's group them first. Then we modify the
flow:
```python
@project.add_flow()
def object_flow(flow, x, out):
out += flow.classifier(x.features)
out += flow.object_x(x.features)
out += flow.object_y(x.features)
out += flow.object_w(x.features)
out += flow.object_h(x.features)
return out
@project.add_flow()
def imagenet_flow(flow, x, out):
out += flow.object_exists(x.features)
out += flow.object_flow(x.features) | out.object_exists
return out
```
But what if the camera is blocked? Then there is no need to do anything, so let's create a new flow
that executes our `imagenet_flow` only when the camera is not blocked.
```python
def full_flow(flow, x, out):
out += flow.camera_blocked(x.features)
out += flow.imagenet_flow(x.features) | (~out.camera_blocked)
return out
```
But what if for example we want to check if the object is a kite, and if it is, to classify its color?
Then we would have to modify our `object_flow` as follows:
```python
@project.add_flow()
def object_flow(flow, x, out):
out += flow.classifier(x.features)
out += flow.object_x(x.features)
out += flow.object_y(x.features)
out += flow.object_w(x.features)
out += flow.object_h(x.features)
out += flow.is_kite(x.features)
out += flow.color(x.features) | out.is_kite
return out
```
I think you can see what `dnn_cool` is meant to do! :)
To see a full walkthrough on a synthetic dataset, check out the [Colab notebook](https://colab.research.google.com/drive/1fEidcOszTI9JXptbuU5GGC-O_yxb6hxO?usp=sharing)
or the [markdown write-up](./story.md).
### Features
Main features are:
* [Task precondition](#task-preconditioning)
* [Missing values handling](#missing-values)
* [Task composition](#task-composition)
* [Tensorboard metrics logging](#tensorboard-logging)
* [Task interpretations](#task-interpretation)
* [Task evaluation](#task-evaluation)
* [Task threshold tuning](#task-threshold-tuning)
* [Dataset generation](#dataset-generation)
* [Tree explanations](#tree-explanations)
* [Memory balancing for dataparallel](#memory-balancing)
##### Task preconditioning
Use the `|` for task preconditioning (think of `P(A|B)` notation). Preconditioning - ` A | B` means that:
* Include the ground truth for `B` in the input batch when training
* When training, update the weights of the `A` only when `B` is satisfied in the ground truth.
* When training, compute the loss function for `A` only when `B` is satisfied in the ground truth
* When training, compute the metrics for `A` only when `B` is satisfied in the ground truth.
* When tuning threshold for `A`, optimize only on values for which `B` is satisfied in the ground truth.
* When doing inference, compute the metrics for `A` only when the precondition is satisfied according to the decoded
result of the `B` task
* When generating tree explanation in inference mode, do not show the branch for `A` if `B` is not
satisfied.
* When computing results interpretation, include only loss terms when the precondition is satisfied.
Usually, you have to keep track of all this stuff manually, which makes adding new preconditions very difficult.
`dnn_cool` makes this stuff easy, so that you can chain a long list of preconditions without worrying you forgot
something.
##### Missing values
Sometimes for an input you don't have labels for all tasks. With `dnn_cool`, you can just mark the missing label and
`dnn_cool` will update only the weights of the tasks for which labels are available.
This feature has the awesome property that you don't need a single dataset with all tasks labeled, you can
have different datasets for different tasks and it will work. For example, you can train a single object detection
neural network that trains its classifier head on ImageNet, and its detection head on COCO.
##### Task composition
You can group tasks in a task flow (we already saw 2 above - `localize_flow` and `full_flow`). You can use this to
organize things better, for example when you want to precondition a whole task flow. For example:
```python
@project.add_flow
def face_regression(flow, x, out):
out += flow.face_x1(x.face_localization)
out += flow.face_y1(x.face_localization)
out += flow.face_w(x.face_localization)
out += flow.face_h(x.face_localization)
out += flow.facial_characteristics(x.features)
return out
```
##### Tensorboard logging
`dnn_cool` logs the metrics per task in Tensorboard, e.g:

##### Task interpretation
Also, the best and worst inputs per task are logged in the Tensorboard, for example if the input is an image:

##### Task evaluation
Per-task evaluation information is available, to pinpoint the exact problem in your network. An example
evaluation dataframe:
| | task_path | metric_name | metric_res | num_samples |
|---:|:---------------------------------------------------------|:--------------------|-------------:|--------------:|
| 0 | camera_blocked | accuracy | 0.980326 | 996 |
| 1 | camera_blocked | f1_score | 0.974368 | 996 |
| 2 | camera_blocked | precision | 0.946635 | 996 |
| 3 | camera_blocked | recall | 0.960107 | 996 |
| 4 | door_open | accuracy | 0.921215 | 902 |
| 5 | door_open | f1_score | 0.966859 | 902 |
| 6 | door_open | precision | 0.976749 | 902 |
| 7 | door_open | recall | 0.939038 | 902 |
| 8 | door_locked | accuracy | 0.983039 | 201 |
| 9 | door_locked | f1_score | 0.948372 | 201 |
| 10 | door_locked | precision | 0.982583 | 201 |
| 11 | door_locked | recall | 0.934788 | 201 |
| 12 | person_present | accuracy | 0.999166 | 701 |
| 13 | person_present | f1_score | 0.937541 | 701 |
| 14 | person_present | precision | 0.927337 | 701 |
| 15 | person_present | recall | 0.963428 | 701 |
| 16 | person_regression.face_regression.face_x1 | mean_absolute_error | 0.0137292 | 611 |
| 17 | person_regression.face_regression.face_y1 | mean_absolute_error | 0.0232761 | 611 |
| 18 | person_regression.face_regression.face_w | mean_absolute_error | 0.00740503 | 611 |
| 19 | person_regression.face_regression.face_h | mean_absolute_error | 0.0101 | 611 |
| 20 | person_regression.face_regression.facial_characteristics | accuracy | 0.932624 | 611 |
| 21 | person_regression.body_regression.body_x1 | mean_absolute_error | 0.00830785 | 611 |
| 22 | person_regression.body_regression.body_y1 | mean_absolute_error | 0.0151234 | 611 |
| 23 | person_regression.body_regression.body_w | mean_absolute_error | 0.0130214 | 611 |
| 24 | person_regression.body_regression.body_h | mean_absolute_error | 0.0101 | 611 |
| 25 | person_regression.body_regression.shirt_type | accuracy_1 | 0.979934 | 611 |
| 26 | person_regression.body_regression.shirt_type | accuracy_3 | 0.993334 | 611 |
| 27 | person_regression.body_regression.shirt_type | accuracy_5 | 0.990526 | 611 |
| 28 | person_regression.body_regression.shirt_type | f1_score | 0.928516 | 611 |
| 29 | person_regression.body_regression.shirt_type | precision | 0.959826 | 611 |
| 30 | person_regression.body_regression.shirt_type | recall | 0.968146 | 611 |
##### Task threshold tuning
Many tasks need to tune their threshold. Just call `flow.get_decoder().tune()` and you will get optimized thresholds
for the metric you define.
##### Dataset generation
As noted above, `dnn_cool` will automatically trace the tasks used as a precondition and include the ground truth for
them under the key `gt`.
##### Tree explanations
Examples:
```
├── inp 1
│ └── camera_blocked | decoded: [False], activated: [0.], logits: [-117.757324]
│ └── door_open | decoded: [ True], activated: [1.], logits: [41.11258]
│ └── person_present | decoded: [ True], activated: [1.], logits: [60.38873]
│ └── person_regression
│ ├── body_regression
│ │ ├── body_h | decoded: [29.672623], activated: [0.46363473], logits: [-0.14571853]
│ │ ├── body_w | decoded: [12.86382], activated: [0.20099719], logits: [-1.3800735]
│ │ ├── body_x1 | decoded: [21.34288], activated: [0.3334825], logits: [-0.69247603]
│ │ ├── body_y1 | decoded: [18.468979], activated: [0.2885778], logits: [-0.9023013]
│ │ └── shirt_type | decoded: [6 1 0 4 2 5 3], activated: [4.1331367e-23 3.5493638e-17 3.1328378e-26 5.6903808e-30 2.4471377e-25
2.8071076e-29 1.0000000e+00], logits: [-20.549513 -6.88627 -27.734364 -36.34787 -25.6788 -34.751904
30.990908]
│ └── face_regression
│ ├── face_h | decoded: [11.265154], activated: [0.17601803], logits: [-1.5435623]
│ ├── face_w | decoded: [12.225838], activated: [0.19102871], logits: [-1.4433397]
│ ├── face_x1 | decoded: [21.98834], activated: [0.34356782], logits: [-0.64743483]
│ ├── face_y1 | decoded: [3.2855165], activated: [0.0513362], logits: [-2.9166584]
│ └── facial_characteristics | decoded: [ True False True], activated: [9.9999940e-01 1.2074912e-12 9.9999833e-01], logits: [ 14.240071 -27.442476 13.27557 ]
```
but if the model thinks the camera is blocked, then the explanation would be:
```
├── inp 2
│ └── camera_blocked | decoded: [ True], activated: [1.], logits: [76.367676]
```
##### Memory balancing
When using [nn.DataParallel](https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html), the computation of
the loss function is done on the main GPU, which leads to dramatically unbalanced memory usage if your outputs are big
and you have a lot of metrics (e.g segmentation masks, language modeling, etc). `dnn_cool` gives you a
convenient way to balance the memory in such situations - just a single `balance_dataparallel_memory = True` handles
this case for you by first reducing all metrics on their respective device, and then additionally aggregating
the results that were reduced on each device automatically. Here's an example memory usage:
Before:

After:

### Customization
Since `flow.torch()` returns a normal `nn.Module`, you can use any library you are used to. If you use
[Catalyst](https://github.com/catalyst-team/catalyst), `dnn_cool` provides a bunch of useful callbacks. Creating
a new task is as simple as creating a new instance of this dataclass:
```python
@dataclass
class Task(ITask):
name: str
labels: Any
loss: nn.Module
per_sample_loss: nn.Module
available_func: Callable
inputs: Any
activation: Optional[nn.Module]
decoder: Decoder
module: nn.Module
metrics: Tuple[str, TorchMetric]
```
Alternatively, you can subclass `ITask` and implement its inferface.
### Inspiration
* [Andrej Karpathy: Tesla Autopilot and Multi-Task Learning for Perception and Prediction](https://www.youtube.com/watch?v=IHH47nZ7FZU)
* [PyTorch at Tesla - Andrej Karpathy, Tesla](https://www.youtube.com/watch?v=oBklltKXtDE)
* [Multitask learning - Andrew Ng](https://www.youtube.com/watch?v=UdXfsAr4Gjw)
%package help
Summary: Development documents and examples for dnn-cool
Provides: python3-dnn-cool-doc
%description help
## `dnn_cool`: Deep Neural Networks for Conditional objective oriented learning
WARNING: API is not yet stable, expect breaking changes in 0.x versions!
To install, just do:
```bash
pip install dnn_cool
```
* [Introduction](#introduction): What is `dnn_cool` in a nutshell?
* [Examples](#examples): a simple step-by-step example.
* [Features](#features): a list of the utilities that `dnn_cool` provides for you
* [Customization](#customization): Learn how to add new tasks, modify them, etc.
* [Inspiration](#inspiration): list of papers and videos which inspired this library
To see the predefined tasks for this release, see [list of predefined tasks](#list-of-predefined-tasks)
### Introduction
A framework for multi-task learning in Pytorch, where you may precondition tasks and compose them into bigger tasks.
Many complex neural networks can be trivially implemented with `dnn_cool`.
For example, creating a neural network that does classification and localization is as simple as:
```python
@project.add_flow
def localize_flow(flow, x, out):
out += flow.obj_exists(x.features)
out += flow.obj_x(x.features) | out.obj_exists
out += flow.obj_y(x.features) | out.obj_exists
out += flow.obj_w(x.features) | out.obj_exists
out += flow.obj_h(x.features) | out.obj_exists
out += flow.obj_class(x.features) | out.obj_exists
return out
```
If for example you want to classify first if the camera is blocked and then do localization **given that the camera
is not blocked**, you could do:
```python
@project.add_flow
def full_flow(flow, x, out):
out += flow.camera_blocked(x.cam_features)
out += flow.localize_flow(x.localization_features) | (~out.camera_blocked)
return out
```
Based on these "task flows" as we call them, `dnn_cool` provides a bunch of [features](#features).
Currently, this is the list of the predefined tasks (they are all located in `dnn_cool.task_flow`):
##### List of predefined tasks
In the current release, the following tasks are available out of the box:
* `BinaryClassificationTask` - sigmoid activation, thresholding decoder, binary cross entropy loss function. In the
examples above, `camera_blocked` and `obj_exists` are `BinaryClassificationTask`s.
* `ClassificationTask` - softmax activation, sorting classes decoder, categorical cross entropy loss. In the example
above, `obj_class` is a `ClassificationTask`
* `MultilabelClassificationTask` - sigmoid activation, thresholding decoder, binary cross entropy loss function.
* `BoundedRegressionTask` - sigmoid activation, rescaling decoder, mean squared error loss function. In the examples
above, `obj_x`, `obj_y`, `obj_w`, `obj_h` are bounded regression tasks.
* `MaskedLanguageModelingTask` - softmax activation, sorting decoder, cross entropy per token loss.
* `TaskFlow` - a composite task, that contains a list of children tasks. We saw 2 task flows above.
### Examples
#### Quick Imagenet example
We just have to add a `ClassificationTask` named `classifier` and add the flow below:
```python
@project.add_flow()
def imagenet_model(flow, x, out):
out += flow.classifier(x.features)
return out
```
That's great! But what if there is not an object always? Then we have to first check if an object exists. Let's
add a `BinaryClassificationTask` and use it as a precondition to classifier.
```python
@project.add_flow()
def imagenet_model(flow, x, out):
out += flow.object_exists(x.features)
out += flow.classifier(x.features) | out.object_exists
return out
```
But what if we also want to localize the object? Then we have to add new tasks that regress the bounding box. Let's
call them `object_x`, `object_y`, `object_w`, `object_h` and make them a `BoundedRegressionTask`. To avoid
preconditioning all tasks on `object_exists`, let's group them first. Then we modify the
flow:
```python
@project.add_flow()
def object_flow(flow, x, out):
out += flow.classifier(x.features)
out += flow.object_x(x.features)
out += flow.object_y(x.features)
out += flow.object_w(x.features)
out += flow.object_h(x.features)
return out
@project.add_flow()
def imagenet_flow(flow, x, out):
out += flow.object_exists(x.features)
out += flow.object_flow(x.features) | out.object_exists
return out
```
But what if the camera is blocked? Then there is no need to do anything, so let's create a new flow
that executes our `imagenet_flow` only when the camera is not blocked.
```python
def full_flow(flow, x, out):
out += flow.camera_blocked(x.features)
out += flow.imagenet_flow(x.features) | (~out.camera_blocked)
return out
```
But what if for example we want to check if the object is a kite, and if it is, to classify its color?
Then we would have to modify our `object_flow` as follows:
```python
@project.add_flow()
def object_flow(flow, x, out):
out += flow.classifier(x.features)
out += flow.object_x(x.features)
out += flow.object_y(x.features)
out += flow.object_w(x.features)
out += flow.object_h(x.features)
out += flow.is_kite(x.features)
out += flow.color(x.features) | out.is_kite
return out
```
I think you can see what `dnn_cool` is meant to do! :)
To see a full walkthrough on a synthetic dataset, check out the [Colab notebook](https://colab.research.google.com/drive/1fEidcOszTI9JXptbuU5GGC-O_yxb6hxO?usp=sharing)
or the [markdown write-up](./story.md).
### Features
Main features are:
* [Task precondition](#task-preconditioning)
* [Missing values handling](#missing-values)
* [Task composition](#task-composition)
* [Tensorboard metrics logging](#tensorboard-logging)
* [Task interpretations](#task-interpretation)
* [Task evaluation](#task-evaluation)
* [Task threshold tuning](#task-threshold-tuning)
* [Dataset generation](#dataset-generation)
* [Tree explanations](#tree-explanations)
* [Memory balancing for dataparallel](#memory-balancing)
##### Task preconditioning
Use the `|` for task preconditioning (think of `P(A|B)` notation). Preconditioning - ` A | B` means that:
* Include the ground truth for `B` in the input batch when training
* When training, update the weights of the `A` only when `B` is satisfied in the ground truth.
* When training, compute the loss function for `A` only when `B` is satisfied in the ground truth
* When training, compute the metrics for `A` only when `B` is satisfied in the ground truth.
* When tuning threshold for `A`, optimize only on values for which `B` is satisfied in the ground truth.
* When doing inference, compute the metrics for `A` only when the precondition is satisfied according to the decoded
result of the `B` task
* When generating tree explanation in inference mode, do not show the branch for `A` if `B` is not
satisfied.
* When computing results interpretation, include only loss terms when the precondition is satisfied.
Usually, you have to keep track of all this stuff manually, which makes adding new preconditions very difficult.
`dnn_cool` makes this stuff easy, so that you can chain a long list of preconditions without worrying you forgot
something.
##### Missing values
Sometimes for an input you don't have labels for all tasks. With `dnn_cool`, you can just mark the missing label and
`dnn_cool` will update only the weights of the tasks for which labels are available.
This feature has the awesome property that you don't need a single dataset with all tasks labeled, you can
have different datasets for different tasks and it will work. For example, you can train a single object detection
neural network that trains its classifier head on ImageNet, and its detection head on COCO.
##### Task composition
You can group tasks in a task flow (we already saw 2 above - `localize_flow` and `full_flow`). You can use this to
organize things better, for example when you want to precondition a whole task flow. For example:
```python
@project.add_flow
def face_regression(flow, x, out):
out += flow.face_x1(x.face_localization)
out += flow.face_y1(x.face_localization)
out += flow.face_w(x.face_localization)
out += flow.face_h(x.face_localization)
out += flow.facial_characteristics(x.features)
return out
```
##### Tensorboard logging
`dnn_cool` logs the metrics per task in Tensorboard, e.g:

##### Task interpretation
Also, the best and worst inputs per task are logged in the Tensorboard, for example if the input is an image:

##### Task evaluation
Per-task evaluation information is available, to pinpoint the exact problem in your network. An example
evaluation dataframe:
| | task_path | metric_name | metric_res | num_samples |
|---:|:---------------------------------------------------------|:--------------------|-------------:|--------------:|
| 0 | camera_blocked | accuracy | 0.980326 | 996 |
| 1 | camera_blocked | f1_score | 0.974368 | 996 |
| 2 | camera_blocked | precision | 0.946635 | 996 |
| 3 | camera_blocked | recall | 0.960107 | 996 |
| 4 | door_open | accuracy | 0.921215 | 902 |
| 5 | door_open | f1_score | 0.966859 | 902 |
| 6 | door_open | precision | 0.976749 | 902 |
| 7 | door_open | recall | 0.939038 | 902 |
| 8 | door_locked | accuracy | 0.983039 | 201 |
| 9 | door_locked | f1_score | 0.948372 | 201 |
| 10 | door_locked | precision | 0.982583 | 201 |
| 11 | door_locked | recall | 0.934788 | 201 |
| 12 | person_present | accuracy | 0.999166 | 701 |
| 13 | person_present | f1_score | 0.937541 | 701 |
| 14 | person_present | precision | 0.927337 | 701 |
| 15 | person_present | recall | 0.963428 | 701 |
| 16 | person_regression.face_regression.face_x1 | mean_absolute_error | 0.0137292 | 611 |
| 17 | person_regression.face_regression.face_y1 | mean_absolute_error | 0.0232761 | 611 |
| 18 | person_regression.face_regression.face_w | mean_absolute_error | 0.00740503 | 611 |
| 19 | person_regression.face_regression.face_h | mean_absolute_error | 0.0101 | 611 |
| 20 | person_regression.face_regression.facial_characteristics | accuracy | 0.932624 | 611 |
| 21 | person_regression.body_regression.body_x1 | mean_absolute_error | 0.00830785 | 611 |
| 22 | person_regression.body_regression.body_y1 | mean_absolute_error | 0.0151234 | 611 |
| 23 | person_regression.body_regression.body_w | mean_absolute_error | 0.0130214 | 611 |
| 24 | person_regression.body_regression.body_h | mean_absolute_error | 0.0101 | 611 |
| 25 | person_regression.body_regression.shirt_type | accuracy_1 | 0.979934 | 611 |
| 26 | person_regression.body_regression.shirt_type | accuracy_3 | 0.993334 | 611 |
| 27 | person_regression.body_regression.shirt_type | accuracy_5 | 0.990526 | 611 |
| 28 | person_regression.body_regression.shirt_type | f1_score | 0.928516 | 611 |
| 29 | person_regression.body_regression.shirt_type | precision | 0.959826 | 611 |
| 30 | person_regression.body_regression.shirt_type | recall | 0.968146 | 611 |
##### Task threshold tuning
Many tasks need to tune their threshold. Just call `flow.get_decoder().tune()` and you will get optimized thresholds
for the metric you define.
##### Dataset generation
As noted above, `dnn_cool` will automatically trace the tasks used as a precondition and include the ground truth for
them under the key `gt`.
##### Tree explanations
Examples:
```
├── inp 1
│ └── camera_blocked | decoded: [False], activated: [0.], logits: [-117.757324]
│ └── door_open | decoded: [ True], activated: [1.], logits: [41.11258]
│ └── person_present | decoded: [ True], activated: [1.], logits: [60.38873]
│ └── person_regression
│ ├── body_regression
│ │ ├── body_h | decoded: [29.672623], activated: [0.46363473], logits: [-0.14571853]
│ │ ├── body_w | decoded: [12.86382], activated: [0.20099719], logits: [-1.3800735]
│ │ ├── body_x1 | decoded: [21.34288], activated: [0.3334825], logits: [-0.69247603]
│ │ ├── body_y1 | decoded: [18.468979], activated: [0.2885778], logits: [-0.9023013]
│ │ └── shirt_type | decoded: [6 1 0 4 2 5 3], activated: [4.1331367e-23 3.5493638e-17 3.1328378e-26 5.6903808e-30 2.4471377e-25
2.8071076e-29 1.0000000e+00], logits: [-20.549513 -6.88627 -27.734364 -36.34787 -25.6788 -34.751904
30.990908]
│ └── face_regression
│ ├── face_h | decoded: [11.265154], activated: [0.17601803], logits: [-1.5435623]
│ ├── face_w | decoded: [12.225838], activated: [0.19102871], logits: [-1.4433397]
│ ├── face_x1 | decoded: [21.98834], activated: [0.34356782], logits: [-0.64743483]
│ ├── face_y1 | decoded: [3.2855165], activated: [0.0513362], logits: [-2.9166584]
│ └── facial_characteristics | decoded: [ True False True], activated: [9.9999940e-01 1.2074912e-12 9.9999833e-01], logits: [ 14.240071 -27.442476 13.27557 ]
```
but if the model thinks the camera is blocked, then the explanation would be:
```
├── inp 2
│ └── camera_blocked | decoded: [ True], activated: [1.], logits: [76.367676]
```
##### Memory balancing
When using [nn.DataParallel](https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html), the computation of
the loss function is done on the main GPU, which leads to dramatically unbalanced memory usage if your outputs are big
and you have a lot of metrics (e.g segmentation masks, language modeling, etc). `dnn_cool` gives you a
convenient way to balance the memory in such situations - just a single `balance_dataparallel_memory = True` handles
this case for you by first reducing all metrics on their respective device, and then additionally aggregating
the results that were reduced on each device automatically. Here's an example memory usage:
Before:

After:

### Customization
Since `flow.torch()` returns a normal `nn.Module`, you can use any library you are used to. If you use
[Catalyst](https://github.com/catalyst-team/catalyst), `dnn_cool` provides a bunch of useful callbacks. Creating
a new task is as simple as creating a new instance of this dataclass:
```python
@dataclass
class Task(ITask):
name: str
labels: Any
loss: nn.Module
per_sample_loss: nn.Module
available_func: Callable
inputs: Any
activation: Optional[nn.Module]
decoder: Decoder
module: nn.Module
metrics: Tuple[str, TorchMetric]
```
Alternatively, you can subclass `ITask` and implement its inferface.
### Inspiration
* [Andrej Karpathy: Tesla Autopilot and Multi-Task Learning for Perception and Prediction](https://www.youtube.com/watch?v=IHH47nZ7FZU)
* [PyTorch at Tesla - Andrej Karpathy, Tesla](https://www.youtube.com/watch?v=oBklltKXtDE)
* [Multitask learning - Andrew Ng](https://www.youtube.com/watch?v=UdXfsAr4Gjw)
%prep
%autosetup -n dnn-cool-0.4.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dnn-cool -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.0-1
- Package Spec generated
|