summaryrefslogtreecommitdiff
path: root/python-dopamine-rl.spec
blob: c540051d0e947def4a0262ffda5f7f831a1a1835 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
%global _empty_manifest_terminate_build 0
Name:		python-dopamine-rl
Version:	4.0.6
Release:	1
Summary:	Dopamine: A framework for flexible Reinforcement Learning research
License:	Apache 2.0
URL:		https://github.com/google/dopamine
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/ec/ec/ab07ca64802f209f7dc23a653c91015fb7459fba60866279684ded589725/dopamine_rl-4.0.6.tar.gz
BuildArch:	noarch

Requires:	python3-tensorflow
Requires:	python3-gin-config
Requires:	python3-absl-py
Requires:	python3-opencv-python
Requires:	python3-gym
Requires:	python3-flax
Requires:	python3-jax
Requires:	python3-jaxlib
Requires:	python3-Pillow
Requires:	python3-numpy
Requires:	python3-pygame
Requires:	python3-pandas
Requires:	python3-tf-slim
Requires:	python3-tensorflow-probability

%description
# Dopamine
[Getting Started](#getting-started) |
[Docs][docs] |
[Baseline Results][baselines] |
[Changelist](https://google.github.io/dopamine/docs/changelist)

<div align="center">
  <img src="https://google.github.io/dopamine/images/dopamine_logo.png"><br><br>
</div>

Dopamine is a research framework for fast prototyping of reinforcement learning
algorithms. It aims to fill the need for a small, easily grokked codebase in
which users can freely experiment with wild ideas (speculative research).

Our design principles are:

* _Easy experimentation_: Make it easy for new users to run benchmark
                          experiments.
* _Flexible development_: Make it easy for new users to try out research ideas.
* _Compact and reliable_: Provide implementations for a few, battle-tested
                          algorithms.
* _Reproducible_: Facilitate reproducibility in results. In particular, our
                  setup follows the recommendations given by
                  [Machado et al. (2018)][machado].

Dopamine supports the following agents, implemented with jax:

* DQN ([Mnih et al., 2015][dqn])
* C51 ([Bellemare et al., 2017][c51])
* Rainbow ([Hessel et al., 2018][rainbow])
* IQN ([Dabney et al., 2018][iqn])
* SAC ([Haarnoja et al., 2018][sac])

For more information on the available agents, see the [docs](https://google.github.io/dopamine/docs).

Many of these agents also have a tensorflow (legacy) implementation, though
newly added agents are likely to be jax-only.

This is not an official Google product.

## Getting Started


We provide docker containers for using Dopamine.
Instructions can be found [here](https://google.github.io/dopamine/docker/).

Alternatively, Dopamine can be installed from source (preferred) or installed
with pip. For either of these methods, continue reading at prerequisites.

### Prerequisites

Dopamine supports Atari environments and Mujoco environments. Install the
environments you intend to use before you install Dopamine:

**Atari**

1. Install the atari roms following the instructions from
[atari-py](https://github.com/openai/atari-py#roms).
2. `pip install ale-py` (we recommend using a [virtual environment](virtualenv)):
3. `unzip $ROM_DIR/ROMS.zip -d $ROM_DIR && ale-import-roms $ROM_DIR/ROMS`
(replace $ROM_DIR with the directory you extracted the ROMs to).

**Mujoco**

1. Install Mujoco and get a license
[here](https://github.com/openai/mujoco-py#install-mujoco).
2. Run `pip install mujoco-py` (we recommend using a
[virtual environment](virtualenv)).

### Installing from Source


The most common way to use Dopamine is to install it from source and modify
the source code directly:

```
git clone https://github.com/google/dopamine
```

After cloning, install dependencies:

```
pip install -r dopamine/requirements.txt
```

Dopamine supports tensorflow (legacy) and jax (actively maintained) agents.
View the [Tensorflow documentation](https://www.tensorflow.org/install) for
more information on installing tensorflow.

Note: We recommend using a [virtual environment](virtualenv) when working with Dopamine.

### Installing with Pip

Note: We strongly recommend installing from source for most users.

Installing with pip is simple, but Dopamine is designed to be modified
directly. We recommend installing from source for writing your own experiments.

```
pip install dopamine-rl
```

### Running tests

You can test whether the installation was successful by running the following
from the dopamine root directory.

```
export PYTHONPATH=$PYTHONPATH:$PWD
python -m tests.dopamine.atari_init_test
```

## Next Steps

View the [docs][docs] for more information on training agents.

We supply [baselines][baselines] for each Dopamine agent.

We also provide a set of [Colaboratory notebooks](https://github.com/google/dopamine/tree/master/dopamine/colab)
which demonstrate how to use Dopamine.

## References

[Bellemare et al., *The Arcade Learning Environment: An evaluation platform for
general agents*. Journal of Artificial Intelligence Research, 2013.][ale]

[Machado et al., *Revisiting the Arcade Learning Environment: Evaluation
Protocols and Open Problems for General Agents*, Journal of Artificial
Intelligence Research, 2018.][machado]

[Hessel et al., *Rainbow: Combining Improvements in Deep Reinforcement Learning*.
Proceedings of the AAAI Conference on Artificial Intelligence, 2018.][rainbow]

[Mnih et al., *Human-level Control through Deep Reinforcement Learning*. Nature,
2015.][dqn]

[Schaul et al., *Prioritized Experience Replay*. Proceedings of the International
Conference on Learning Representations, 2016.][prioritized_replay]

[Haarnoja et al., *Soft Actor-Critic Algorithms and Applications*,
arXiv preprint arXiv:1812.05905, 2018.][sac]

## Giving credit

If you use Dopamine in your work, we ask that you cite our
[white paper][dopamine_paper]. Here is an example BibTeX entry:

```
@article{castro18dopamine,
  author    = {Pablo Samuel Castro and
               Subhodeep Moitra and
               Carles Gelada and
               Saurabh Kumar and
               Marc G. Bellemare},
  title     = {Dopamine: {A} {R}esearch {F}ramework for {D}eep {R}einforcement {L}earning},
  year      = {2018},
  url       = {http://arxiv.org/abs/1812.06110},
  archivePrefix = {arXiv}
}
```



[docs]: https://google.github.io/dopamine/docs/
[baselines]: https://google.github.io/dopamine/baselines
[machado]: https://jair.org/index.php/jair/article/view/11182
[ale]: https://jair.org/index.php/jair/article/view/10819
[dqn]: https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
[a3c]: http://proceedings.mlr.press/v48/mniha16.html
[prioritized_replay]: https://arxiv.org/abs/1511.05952
[c51]: http://proceedings.mlr.press/v70/bellemare17a.html
[rainbow]: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17204/16680
[iqn]: https://arxiv.org/abs/1806.06923
[sac]: https://arxiv.org/abs/1812.05905
[dopamine_paper]: https://arxiv.org/abs/1812.06110
[vitualenv]: https://docs.python.org/3/library/venv.html#creating-virtual-environments




%package -n python3-dopamine-rl
Summary:	Dopamine: A framework for flexible Reinforcement Learning research
Provides:	python-dopamine-rl
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-dopamine-rl
# Dopamine
[Getting Started](#getting-started) |
[Docs][docs] |
[Baseline Results][baselines] |
[Changelist](https://google.github.io/dopamine/docs/changelist)

<div align="center">
  <img src="https://google.github.io/dopamine/images/dopamine_logo.png"><br><br>
</div>

Dopamine is a research framework for fast prototyping of reinforcement learning
algorithms. It aims to fill the need for a small, easily grokked codebase in
which users can freely experiment with wild ideas (speculative research).

Our design principles are:

* _Easy experimentation_: Make it easy for new users to run benchmark
                          experiments.
* _Flexible development_: Make it easy for new users to try out research ideas.
* _Compact and reliable_: Provide implementations for a few, battle-tested
                          algorithms.
* _Reproducible_: Facilitate reproducibility in results. In particular, our
                  setup follows the recommendations given by
                  [Machado et al. (2018)][machado].

Dopamine supports the following agents, implemented with jax:

* DQN ([Mnih et al., 2015][dqn])
* C51 ([Bellemare et al., 2017][c51])
* Rainbow ([Hessel et al., 2018][rainbow])
* IQN ([Dabney et al., 2018][iqn])
* SAC ([Haarnoja et al., 2018][sac])

For more information on the available agents, see the [docs](https://google.github.io/dopamine/docs).

Many of these agents also have a tensorflow (legacy) implementation, though
newly added agents are likely to be jax-only.

This is not an official Google product.

## Getting Started


We provide docker containers for using Dopamine.
Instructions can be found [here](https://google.github.io/dopamine/docker/).

Alternatively, Dopamine can be installed from source (preferred) or installed
with pip. For either of these methods, continue reading at prerequisites.

### Prerequisites

Dopamine supports Atari environments and Mujoco environments. Install the
environments you intend to use before you install Dopamine:

**Atari**

1. Install the atari roms following the instructions from
[atari-py](https://github.com/openai/atari-py#roms).
2. `pip install ale-py` (we recommend using a [virtual environment](virtualenv)):
3. `unzip $ROM_DIR/ROMS.zip -d $ROM_DIR && ale-import-roms $ROM_DIR/ROMS`
(replace $ROM_DIR with the directory you extracted the ROMs to).

**Mujoco**

1. Install Mujoco and get a license
[here](https://github.com/openai/mujoco-py#install-mujoco).
2. Run `pip install mujoco-py` (we recommend using a
[virtual environment](virtualenv)).

### Installing from Source


The most common way to use Dopamine is to install it from source and modify
the source code directly:

```
git clone https://github.com/google/dopamine
```

After cloning, install dependencies:

```
pip install -r dopamine/requirements.txt
```

Dopamine supports tensorflow (legacy) and jax (actively maintained) agents.
View the [Tensorflow documentation](https://www.tensorflow.org/install) for
more information on installing tensorflow.

Note: We recommend using a [virtual environment](virtualenv) when working with Dopamine.

### Installing with Pip

Note: We strongly recommend installing from source for most users.

Installing with pip is simple, but Dopamine is designed to be modified
directly. We recommend installing from source for writing your own experiments.

```
pip install dopamine-rl
```

### Running tests

You can test whether the installation was successful by running the following
from the dopamine root directory.

```
export PYTHONPATH=$PYTHONPATH:$PWD
python -m tests.dopamine.atari_init_test
```

## Next Steps

View the [docs][docs] for more information on training agents.

We supply [baselines][baselines] for each Dopamine agent.

We also provide a set of [Colaboratory notebooks](https://github.com/google/dopamine/tree/master/dopamine/colab)
which demonstrate how to use Dopamine.

## References

[Bellemare et al., *The Arcade Learning Environment: An evaluation platform for
general agents*. Journal of Artificial Intelligence Research, 2013.][ale]

[Machado et al., *Revisiting the Arcade Learning Environment: Evaluation
Protocols and Open Problems for General Agents*, Journal of Artificial
Intelligence Research, 2018.][machado]

[Hessel et al., *Rainbow: Combining Improvements in Deep Reinforcement Learning*.
Proceedings of the AAAI Conference on Artificial Intelligence, 2018.][rainbow]

[Mnih et al., *Human-level Control through Deep Reinforcement Learning*. Nature,
2015.][dqn]

[Schaul et al., *Prioritized Experience Replay*. Proceedings of the International
Conference on Learning Representations, 2016.][prioritized_replay]

[Haarnoja et al., *Soft Actor-Critic Algorithms and Applications*,
arXiv preprint arXiv:1812.05905, 2018.][sac]

## Giving credit

If you use Dopamine in your work, we ask that you cite our
[white paper][dopamine_paper]. Here is an example BibTeX entry:

```
@article{castro18dopamine,
  author    = {Pablo Samuel Castro and
               Subhodeep Moitra and
               Carles Gelada and
               Saurabh Kumar and
               Marc G. Bellemare},
  title     = {Dopamine: {A} {R}esearch {F}ramework for {D}eep {R}einforcement {L}earning},
  year      = {2018},
  url       = {http://arxiv.org/abs/1812.06110},
  archivePrefix = {arXiv}
}
```



[docs]: https://google.github.io/dopamine/docs/
[baselines]: https://google.github.io/dopamine/baselines
[machado]: https://jair.org/index.php/jair/article/view/11182
[ale]: https://jair.org/index.php/jair/article/view/10819
[dqn]: https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
[a3c]: http://proceedings.mlr.press/v48/mniha16.html
[prioritized_replay]: https://arxiv.org/abs/1511.05952
[c51]: http://proceedings.mlr.press/v70/bellemare17a.html
[rainbow]: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17204/16680
[iqn]: https://arxiv.org/abs/1806.06923
[sac]: https://arxiv.org/abs/1812.05905
[dopamine_paper]: https://arxiv.org/abs/1812.06110
[vitualenv]: https://docs.python.org/3/library/venv.html#creating-virtual-environments




%package help
Summary:	Development documents and examples for dopamine-rl
Provides:	python3-dopamine-rl-doc
%description help
# Dopamine
[Getting Started](#getting-started) |
[Docs][docs] |
[Baseline Results][baselines] |
[Changelist](https://google.github.io/dopamine/docs/changelist)

<div align="center">
  <img src="https://google.github.io/dopamine/images/dopamine_logo.png"><br><br>
</div>

Dopamine is a research framework for fast prototyping of reinforcement learning
algorithms. It aims to fill the need for a small, easily grokked codebase in
which users can freely experiment with wild ideas (speculative research).

Our design principles are:

* _Easy experimentation_: Make it easy for new users to run benchmark
                          experiments.
* _Flexible development_: Make it easy for new users to try out research ideas.
* _Compact and reliable_: Provide implementations for a few, battle-tested
                          algorithms.
* _Reproducible_: Facilitate reproducibility in results. In particular, our
                  setup follows the recommendations given by
                  [Machado et al. (2018)][machado].

Dopamine supports the following agents, implemented with jax:

* DQN ([Mnih et al., 2015][dqn])
* C51 ([Bellemare et al., 2017][c51])
* Rainbow ([Hessel et al., 2018][rainbow])
* IQN ([Dabney et al., 2018][iqn])
* SAC ([Haarnoja et al., 2018][sac])

For more information on the available agents, see the [docs](https://google.github.io/dopamine/docs).

Many of these agents also have a tensorflow (legacy) implementation, though
newly added agents are likely to be jax-only.

This is not an official Google product.

## Getting Started


We provide docker containers for using Dopamine.
Instructions can be found [here](https://google.github.io/dopamine/docker/).

Alternatively, Dopamine can be installed from source (preferred) or installed
with pip. For either of these methods, continue reading at prerequisites.

### Prerequisites

Dopamine supports Atari environments and Mujoco environments. Install the
environments you intend to use before you install Dopamine:

**Atari**

1. Install the atari roms following the instructions from
[atari-py](https://github.com/openai/atari-py#roms).
2. `pip install ale-py` (we recommend using a [virtual environment](virtualenv)):
3. `unzip $ROM_DIR/ROMS.zip -d $ROM_DIR && ale-import-roms $ROM_DIR/ROMS`
(replace $ROM_DIR with the directory you extracted the ROMs to).

**Mujoco**

1. Install Mujoco and get a license
[here](https://github.com/openai/mujoco-py#install-mujoco).
2. Run `pip install mujoco-py` (we recommend using a
[virtual environment](virtualenv)).

### Installing from Source


The most common way to use Dopamine is to install it from source and modify
the source code directly:

```
git clone https://github.com/google/dopamine
```

After cloning, install dependencies:

```
pip install -r dopamine/requirements.txt
```

Dopamine supports tensorflow (legacy) and jax (actively maintained) agents.
View the [Tensorflow documentation](https://www.tensorflow.org/install) for
more information on installing tensorflow.

Note: We recommend using a [virtual environment](virtualenv) when working with Dopamine.

### Installing with Pip

Note: We strongly recommend installing from source for most users.

Installing with pip is simple, but Dopamine is designed to be modified
directly. We recommend installing from source for writing your own experiments.

```
pip install dopamine-rl
```

### Running tests

You can test whether the installation was successful by running the following
from the dopamine root directory.

```
export PYTHONPATH=$PYTHONPATH:$PWD
python -m tests.dopamine.atari_init_test
```

## Next Steps

View the [docs][docs] for more information on training agents.

We supply [baselines][baselines] for each Dopamine agent.

We also provide a set of [Colaboratory notebooks](https://github.com/google/dopamine/tree/master/dopamine/colab)
which demonstrate how to use Dopamine.

## References

[Bellemare et al., *The Arcade Learning Environment: An evaluation platform for
general agents*. Journal of Artificial Intelligence Research, 2013.][ale]

[Machado et al., *Revisiting the Arcade Learning Environment: Evaluation
Protocols and Open Problems for General Agents*, Journal of Artificial
Intelligence Research, 2018.][machado]

[Hessel et al., *Rainbow: Combining Improvements in Deep Reinforcement Learning*.
Proceedings of the AAAI Conference on Artificial Intelligence, 2018.][rainbow]

[Mnih et al., *Human-level Control through Deep Reinforcement Learning*. Nature,
2015.][dqn]

[Schaul et al., *Prioritized Experience Replay*. Proceedings of the International
Conference on Learning Representations, 2016.][prioritized_replay]

[Haarnoja et al., *Soft Actor-Critic Algorithms and Applications*,
arXiv preprint arXiv:1812.05905, 2018.][sac]

## Giving credit

If you use Dopamine in your work, we ask that you cite our
[white paper][dopamine_paper]. Here is an example BibTeX entry:

```
@article{castro18dopamine,
  author    = {Pablo Samuel Castro and
               Subhodeep Moitra and
               Carles Gelada and
               Saurabh Kumar and
               Marc G. Bellemare},
  title     = {Dopamine: {A} {R}esearch {F}ramework for {D}eep {R}einforcement {L}earning},
  year      = {2018},
  url       = {http://arxiv.org/abs/1812.06110},
  archivePrefix = {arXiv}
}
```



[docs]: https://google.github.io/dopamine/docs/
[baselines]: https://google.github.io/dopamine/baselines
[machado]: https://jair.org/index.php/jair/article/view/11182
[ale]: https://jair.org/index.php/jair/article/view/10819
[dqn]: https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
[a3c]: http://proceedings.mlr.press/v48/mniha16.html
[prioritized_replay]: https://arxiv.org/abs/1511.05952
[c51]: http://proceedings.mlr.press/v70/bellemare17a.html
[rainbow]: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17204/16680
[iqn]: https://arxiv.org/abs/1806.06923
[sac]: https://arxiv.org/abs/1812.05905
[dopamine_paper]: https://arxiv.org/abs/1812.06110
[vitualenv]: https://docs.python.org/3/library/venv.html#creating-virtual-environments




%prep
%autosetup -n dopamine-rl-4.0.6

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-dopamine-rl -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 4.0.6-1
- Package Spec generated