1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
%global _empty_manifest_terminate_build 0
Name: python-dossier.models
Version: 0.6.16
Release: 1
Summary: Active learning models
License: MIT
URL: http://github.com/dossier/dossier.models
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/0e/3c/a0496eb03f1c31f066a32fa87a4b5177839f231ba0aa9279ecc28b796bb8/dossier.models-0.6.16.tar.gz
BuildArch: noarch
%description
`dossier.models` is a Python package that provides experimental active learning
models. They are meant to be used as search engines through `dossier.web` web
services.
### Installation
`dossier.models` is on PyPI and can be installed with `pip`:
```bash
pip install dossier.models
```
Currently, `dossier.models` requires Python 2.7. It is not yet Python 3
compatible.
### Documentation
API documentation with examples is available as part of the Dossier Stack
documentation:
[http://dossier-stack.readthedocs.org](http://dossier-stack.readthedocs.org#module-dossier.models)
### Running a simple example
`dossier.models` comes with an example web application that demonstrates how to
use all of the Dossier Stack components to do active learning. The following is
a step-by-step guide to get you up and running with a simple example of
SortingDesk. This guide assumes basic familiarity with standard Python tools
like `pip` and `virtualenv`.
This guide also requires a database of some sort to store data. You can use
any of the backends supported by [kvlayer](https://github.com/diffeo/kvlayer)
(like PostgreSQL, HBase or MySQL). For this guide, we'll use Redis since it
requires very little setup. Just make sure it is installed and running on your
system.
Here are a couple of screenshots of SortingDesk in action:
[](http://i.imgur.com/I0qT4M9.png)
[](http://i.imgur.com/Uxeksx5.png)
First, you should create a new Python virtual environment and install
`dossier.models` from PyPI:
```bash
$ virtualenv dossier
$ source ./dossier/bin/activate
$ pip install dossier.models
```
Depending upon your system setup, this may take a bit of time since
`dossier.models` depends on `numpy`, `scipy` and `scikit-learn`.
Now verify that `dossier.models` is installed correctly:
```bash
$ python -c 'import dossier.models'
```
If all is well, then the command should complete successfully without any
output.
Next, we need to setup configuration so that Dossier Stack knows which database
to use and which indexes to create on feature collections. You can grab
a sample configuration from GitHub:
```bash
$ curl -O https://raw.githubusercontent.com/dossier/dossier.models/master/data/config.yaml
```
The config looks like this:
```yaml
kvlayer:
app_name: dossier
namespace: models
storage_type: redis
storage_addresses: ['localhost:6379']
dossier.store:
feature_indexes: ['name', 'keywords']
```
The first section configures your database credentials. This config assumes
you're using Redis running on `localhost` on port `6379` (the default).
The second section tells Dossier Stack which indexes to create on feature
collections. This configuration is dependent on the features in your data.
In this sample configuration, we've chosen `name` and `keywords` because both
are features in the sample data set.
To download and load the sample data set, grab it from GitHub and use the
`dossier.store` command to load it:
```bash
$ curl -O https://raw.githubusercontent.com/dossier/dossier.models/master/data/example.fc
$ dossier.store -c config.yaml load --id-feature content_id example.fc
```
The `dossier.store` command allows you to interact with feature collections
stored in your database. The `--id-feature` flag tells `dossier.store` to use
the value of the `content_id` feature as the feature collection's primary key.
If this flag is omitted, then a `uuid` is generated instead.
You can confirm that data was added to your database with the `ids` command:
```bash
$ dossier.store -c config.yaml ids
doc11
doc12
doc21
doc22
doc23
...
```
Finally, you can run the web application bundled with `dossier.models`:
```bash
$ dossier.models -c config.yaml
```
Open your browser to
[http://localhost:8080/SortingDesk](http://localhost:8080/SortingDesk) to
see an example of `SortingDesk` with the sample data. If you click on the `X`
link on an item in the queue, a negative label will be added between it and the
query indicated at the top of the page. Or you can drag an item from the queue
into a bin---or drop it anywhere on the body page to create a new bin. Bins can
also be dragged on to other bins to merge them. Go ahead and try it. You can
confirm that a label was made with the `dossier.label` command:
```bash
$ dossier.label -c config.yaml list
Label(doc22, doc42, annotator=unknown, 2014-11-26 16:02:01, value=CorefValue.Negative)
```
You should also be able to see labels being added in the output of the
`dossier.models` command if you're running it in your terminal.
There is also a simpler example using plain `SortingQueue` available at
[http://localhost:8080/SortingQueue](http://localhost:8080/SortingQueue).
%package -n python3-dossier.models
Summary: Active learning models
Provides: python-dossier.models
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dossier.models
`dossier.models` is a Python package that provides experimental active learning
models. They are meant to be used as search engines through `dossier.web` web
services.
### Installation
`dossier.models` is on PyPI and can be installed with `pip`:
```bash
pip install dossier.models
```
Currently, `dossier.models` requires Python 2.7. It is not yet Python 3
compatible.
### Documentation
API documentation with examples is available as part of the Dossier Stack
documentation:
[http://dossier-stack.readthedocs.org](http://dossier-stack.readthedocs.org#module-dossier.models)
### Running a simple example
`dossier.models` comes with an example web application that demonstrates how to
use all of the Dossier Stack components to do active learning. The following is
a step-by-step guide to get you up and running with a simple example of
SortingDesk. This guide assumes basic familiarity with standard Python tools
like `pip` and `virtualenv`.
This guide also requires a database of some sort to store data. You can use
any of the backends supported by [kvlayer](https://github.com/diffeo/kvlayer)
(like PostgreSQL, HBase or MySQL). For this guide, we'll use Redis since it
requires very little setup. Just make sure it is installed and running on your
system.
Here are a couple of screenshots of SortingDesk in action:
[](http://i.imgur.com/I0qT4M9.png)
[](http://i.imgur.com/Uxeksx5.png)
First, you should create a new Python virtual environment and install
`dossier.models` from PyPI:
```bash
$ virtualenv dossier
$ source ./dossier/bin/activate
$ pip install dossier.models
```
Depending upon your system setup, this may take a bit of time since
`dossier.models` depends on `numpy`, `scipy` and `scikit-learn`.
Now verify that `dossier.models` is installed correctly:
```bash
$ python -c 'import dossier.models'
```
If all is well, then the command should complete successfully without any
output.
Next, we need to setup configuration so that Dossier Stack knows which database
to use and which indexes to create on feature collections. You can grab
a sample configuration from GitHub:
```bash
$ curl -O https://raw.githubusercontent.com/dossier/dossier.models/master/data/config.yaml
```
The config looks like this:
```yaml
kvlayer:
app_name: dossier
namespace: models
storage_type: redis
storage_addresses: ['localhost:6379']
dossier.store:
feature_indexes: ['name', 'keywords']
```
The first section configures your database credentials. This config assumes
you're using Redis running on `localhost` on port `6379` (the default).
The second section tells Dossier Stack which indexes to create on feature
collections. This configuration is dependent on the features in your data.
In this sample configuration, we've chosen `name` and `keywords` because both
are features in the sample data set.
To download and load the sample data set, grab it from GitHub and use the
`dossier.store` command to load it:
```bash
$ curl -O https://raw.githubusercontent.com/dossier/dossier.models/master/data/example.fc
$ dossier.store -c config.yaml load --id-feature content_id example.fc
```
The `dossier.store` command allows you to interact with feature collections
stored in your database. The `--id-feature` flag tells `dossier.store` to use
the value of the `content_id` feature as the feature collection's primary key.
If this flag is omitted, then a `uuid` is generated instead.
You can confirm that data was added to your database with the `ids` command:
```bash
$ dossier.store -c config.yaml ids
doc11
doc12
doc21
doc22
doc23
...
```
Finally, you can run the web application bundled with `dossier.models`:
```bash
$ dossier.models -c config.yaml
```
Open your browser to
[http://localhost:8080/SortingDesk](http://localhost:8080/SortingDesk) to
see an example of `SortingDesk` with the sample data. If you click on the `X`
link on an item in the queue, a negative label will be added between it and the
query indicated at the top of the page. Or you can drag an item from the queue
into a bin---or drop it anywhere on the body page to create a new bin. Bins can
also be dragged on to other bins to merge them. Go ahead and try it. You can
confirm that a label was made with the `dossier.label` command:
```bash
$ dossier.label -c config.yaml list
Label(doc22, doc42, annotator=unknown, 2014-11-26 16:02:01, value=CorefValue.Negative)
```
You should also be able to see labels being added in the output of the
`dossier.models` command if you're running it in your terminal.
There is also a simpler example using plain `SortingQueue` available at
[http://localhost:8080/SortingQueue](http://localhost:8080/SortingQueue).
%package help
Summary: Development documents and examples for dossier.models
Provides: python3-dossier.models-doc
%description help
`dossier.models` is a Python package that provides experimental active learning
models. They are meant to be used as search engines through `dossier.web` web
services.
### Installation
`dossier.models` is on PyPI and can be installed with `pip`:
```bash
pip install dossier.models
```
Currently, `dossier.models` requires Python 2.7. It is not yet Python 3
compatible.
### Documentation
API documentation with examples is available as part of the Dossier Stack
documentation:
[http://dossier-stack.readthedocs.org](http://dossier-stack.readthedocs.org#module-dossier.models)
### Running a simple example
`dossier.models` comes with an example web application that demonstrates how to
use all of the Dossier Stack components to do active learning. The following is
a step-by-step guide to get you up and running with a simple example of
SortingDesk. This guide assumes basic familiarity with standard Python tools
like `pip` and `virtualenv`.
This guide also requires a database of some sort to store data. You can use
any of the backends supported by [kvlayer](https://github.com/diffeo/kvlayer)
(like PostgreSQL, HBase or MySQL). For this guide, we'll use Redis since it
requires very little setup. Just make sure it is installed and running on your
system.
Here are a couple of screenshots of SortingDesk in action:
[](http://i.imgur.com/I0qT4M9.png)
[](http://i.imgur.com/Uxeksx5.png)
First, you should create a new Python virtual environment and install
`dossier.models` from PyPI:
```bash
$ virtualenv dossier
$ source ./dossier/bin/activate
$ pip install dossier.models
```
Depending upon your system setup, this may take a bit of time since
`dossier.models` depends on `numpy`, `scipy` and `scikit-learn`.
Now verify that `dossier.models` is installed correctly:
```bash
$ python -c 'import dossier.models'
```
If all is well, then the command should complete successfully without any
output.
Next, we need to setup configuration so that Dossier Stack knows which database
to use and which indexes to create on feature collections. You can grab
a sample configuration from GitHub:
```bash
$ curl -O https://raw.githubusercontent.com/dossier/dossier.models/master/data/config.yaml
```
The config looks like this:
```yaml
kvlayer:
app_name: dossier
namespace: models
storage_type: redis
storage_addresses: ['localhost:6379']
dossier.store:
feature_indexes: ['name', 'keywords']
```
The first section configures your database credentials. This config assumes
you're using Redis running on `localhost` on port `6379` (the default).
The second section tells Dossier Stack which indexes to create on feature
collections. This configuration is dependent on the features in your data.
In this sample configuration, we've chosen `name` and `keywords` because both
are features in the sample data set.
To download and load the sample data set, grab it from GitHub and use the
`dossier.store` command to load it:
```bash
$ curl -O https://raw.githubusercontent.com/dossier/dossier.models/master/data/example.fc
$ dossier.store -c config.yaml load --id-feature content_id example.fc
```
The `dossier.store` command allows you to interact with feature collections
stored in your database. The `--id-feature` flag tells `dossier.store` to use
the value of the `content_id` feature as the feature collection's primary key.
If this flag is omitted, then a `uuid` is generated instead.
You can confirm that data was added to your database with the `ids` command:
```bash
$ dossier.store -c config.yaml ids
doc11
doc12
doc21
doc22
doc23
...
```
Finally, you can run the web application bundled with `dossier.models`:
```bash
$ dossier.models -c config.yaml
```
Open your browser to
[http://localhost:8080/SortingDesk](http://localhost:8080/SortingDesk) to
see an example of `SortingDesk` with the sample data. If you click on the `X`
link on an item in the queue, a negative label will be added between it and the
query indicated at the top of the page. Or you can drag an item from the queue
into a bin---or drop it anywhere on the body page to create a new bin. Bins can
also be dragged on to other bins to merge them. Go ahead and try it. You can
confirm that a label was made with the `dossier.label` command:
```bash
$ dossier.label -c config.yaml list
Label(doc22, doc42, annotator=unknown, 2014-11-26 16:02:01, value=CorefValue.Negative)
```
You should also be able to see labels being added in the output of the
`dossier.models` command if you're running it in your terminal.
There is also a simpler example using plain `SortingQueue` available at
[http://localhost:8080/SortingQueue](http://localhost:8080/SortingQueue).
%prep
%autosetup -n dossier.models-0.6.16
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dossier.models -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.16-1
- Package Spec generated
|