diff options
author | CoprDistGit <infra@openeuler.org> | 2023-06-20 03:48:59 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-06-20 03:48:59 +0000 |
commit | f6e30c343f8053de824645065124529cf253b45a (patch) | |
tree | 095fa0cc460bfe9927c117f71d9f29ed98c73212 | |
parent | 8e493ea7672454f6e5f990b37111da1e9887cb13 (diff) |
automatic import of python-dtreepltopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-dtreeplt.spec | 263 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 265 insertions, 0 deletions
@@ -0,0 +1 @@ +/dtreeplt-0.1.43.tar.gz diff --git a/python-dtreeplt.spec b/python-dtreeplt.spec new file mode 100644 index 0000000..30957bc --- /dev/null +++ b/python-dtreeplt.spec @@ -0,0 +1,263 @@ +%global _empty_manifest_terminate_build 0 +Name: python-dtreeplt +Version: 0.1.43 +Release: 1 +Summary: Visualize Decision Tree without Graphviz. +License: MIT +URL: https://github.com/nekoumei/dtreeplt +Source0: https://mirrors.aliyun.com/pypi/web/packages/8d/de/403ad62e0b27a65259fff36b9b27d46d9cb055fe7cd4ff166dfb72c4f3e5/dtreeplt-0.1.43.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-matplotlib +Requires: python3-scikit-learn +Requires: python3-ipython +Requires: python3-ipywidgets + +%description +# dtreeplt +it draws Decision Tree not using Graphviz, but only matplotlib. +If `interactive == True`, it draws Interactive Decision Tree on Notebook. + +## Output Image using proposed method: dtreeplt (using only matplotlib) + + +## Output Image using conventional method: export_graphviz (Using Graphviz) + + +## Output Image using dtreeplt Interactive Decision Tree + + + +## Installation +If you want to use the latest version, please use them on git. + +`pip install git+https://github.com/nekoumei/dtreeplt.git` + +when it comes to update, command like below. + + `pip install git+https://github.com/nekoumei/dtreeplt.git -U` + + +Requirements: see requirements.txt +Python 3.6.X. + +## Usage +### Quick Start +```python +from dtreeplt import dtreeplt +dtree = dtreeplt() +dtree.view() +# If you want to use interactive mode, set the parameter like below. +# dtree.view(interactive=True) + +``` +### Using trained DecisionTreeClassifier +```python +# You should prepare trained model,feature_names, target_names. +# in this example, use iris datasets. +from sklearn.datasets import load_iris +from sklearn.tree import DecisionTreeClassifier +from dtreeplt import dtreeplt + +iris = load_iris() +model = DecisionTreeClassifier() +model.fit(iris.data, iris.target) + +dtree = dtreeplt( + model=model, + feature_names=iris.feature_names, + target_names=iris.target_names +) +fig = dtree.view() +#if you want save figure, use savefig method in returned figure object. +#fig.savefig('output.png') +``` + + + + + + +%package -n python3-dtreeplt +Summary: Visualize Decision Tree without Graphviz. +Provides: python-dtreeplt +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-dtreeplt +# dtreeplt +it draws Decision Tree not using Graphviz, but only matplotlib. +If `interactive == True`, it draws Interactive Decision Tree on Notebook. + +## Output Image using proposed method: dtreeplt (using only matplotlib) + + +## Output Image using conventional method: export_graphviz (Using Graphviz) + + +## Output Image using dtreeplt Interactive Decision Tree + + + +## Installation +If you want to use the latest version, please use them on git. + +`pip install git+https://github.com/nekoumei/dtreeplt.git` + +when it comes to update, command like below. + + `pip install git+https://github.com/nekoumei/dtreeplt.git -U` + + +Requirements: see requirements.txt +Python 3.6.X. + +## Usage +### Quick Start +```python +from dtreeplt import dtreeplt +dtree = dtreeplt() +dtree.view() +# If you want to use interactive mode, set the parameter like below. +# dtree.view(interactive=True) + +``` +### Using trained DecisionTreeClassifier +```python +# You should prepare trained model,feature_names, target_names. +# in this example, use iris datasets. +from sklearn.datasets import load_iris +from sklearn.tree import DecisionTreeClassifier +from dtreeplt import dtreeplt + +iris = load_iris() +model = DecisionTreeClassifier() +model.fit(iris.data, iris.target) + +dtree = dtreeplt( + model=model, + feature_names=iris.feature_names, + target_names=iris.target_names +) +fig = dtree.view() +#if you want save figure, use savefig method in returned figure object. +#fig.savefig('output.png') +``` + + + + + + +%package help +Summary: Development documents and examples for dtreeplt +Provides: python3-dtreeplt-doc +%description help +# dtreeplt +it draws Decision Tree not using Graphviz, but only matplotlib. +If `interactive == True`, it draws Interactive Decision Tree on Notebook. + +## Output Image using proposed method: dtreeplt (using only matplotlib) + + +## Output Image using conventional method: export_graphviz (Using Graphviz) + + +## Output Image using dtreeplt Interactive Decision Tree + + + +## Installation +If you want to use the latest version, please use them on git. + +`pip install git+https://github.com/nekoumei/dtreeplt.git` + +when it comes to update, command like below. + + `pip install git+https://github.com/nekoumei/dtreeplt.git -U` + + +Requirements: see requirements.txt +Python 3.6.X. + +## Usage +### Quick Start +```python +from dtreeplt import dtreeplt +dtree = dtreeplt() +dtree.view() +# If you want to use interactive mode, set the parameter like below. +# dtree.view(interactive=True) + +``` +### Using trained DecisionTreeClassifier +```python +# You should prepare trained model,feature_names, target_names. +# in this example, use iris datasets. +from sklearn.datasets import load_iris +from sklearn.tree import DecisionTreeClassifier +from dtreeplt import dtreeplt + +iris = load_iris() +model = DecisionTreeClassifier() +model.fit(iris.data, iris.target) + +dtree = dtreeplt( + model=model, + feature_names=iris.feature_names, + target_names=iris.target_names +) +fig = dtree.view() +#if you want save figure, use savefig method in returned figure object. +#fig.savefig('output.png') +``` + + + + + + +%prep +%autosetup -n dtreeplt-0.1.43 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-dtreeplt -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.43-1 +- Package Spec generated @@ -0,0 +1 @@ +73054dd6b956ee5c291d6e482f775887 dtreeplt-0.1.43.tar.gz |