summaryrefslogtreecommitdiff
path: root/python-dtreeviz.spec
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-10 16:06:05 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-10 16:06:05 +0000
commitb1013758b51a19460c015209aff4f8a8ecc6245b (patch)
tree8ea8afc795b718d6d7bb895588d17b4cb41831cc /python-dtreeviz.spec
parent2e9dac4737a80f85444ab734f13451b1c81b5efc (diff)
automatic import of python-dtreeviz
Diffstat (limited to 'python-dtreeviz.spec')
-rw-r--r--python-dtreeviz.spec96
1 files changed, 96 insertions, 0 deletions
diff --git a/python-dtreeviz.spec b/python-dtreeviz.spec
new file mode 100644
index 0000000..d2cb15e
--- /dev/null
+++ b/python-dtreeviz.spec
@@ -0,0 +1,96 @@
+%global _empty_manifest_terminate_build 0
+Name: python-dtreeviz
+Version: 2.2.0
+Release: 1
+Summary: A Python 3 library for sci-kit learn, XGBoost, LightGBM, Spark, and TensorFlow decision tree visualization
+License: MIT
+URL: https://github.com/parrt/dtreeviz
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a5/da/ddc3f75762c7342c91f3f1388dabcbd1a852ccaafcabd2994900cf2eb934/dtreeviz-2.2.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-graphviz
+Requires: python3-pandas
+Requires: python3-numpy
+Requires: python3-scikit-learn
+Requires: python3-matplotlib
+Requires: python3-colour
+Requires: python3-pytest
+Requires: python3-xgboost
+Requires: python3-pyspark
+Requires: python3-lightgbm
+Requires: python3-tensorflow-decision-forests
+Requires: python3-lightgbm
+Requires: python3-pyspark
+Requires: python3-tensorflow-decision-forests
+Requires: python3-xgboost
+
+%description
+A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of [gradient boosting machines](http://explained.ai/gradient-boosting/index.html) and [Random Forests](https://en.wikipedia.org/wiki/Random_forest)(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by [R2D3](http://www.r2d3.us/); [A visual introduction to machine learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/). Please see [How to visualize decision trees](http://explained.ai/decision-tree-viz/index.html) for deeper discussion of our decision tree visualization library and the visual design decisions we made.
+
+Currently dtreeviz supports: [scikit-learn](https://scikit-learn.org/stable), [XGBoost](https://xgboost.readthedocs.io/en/latest), [Spark MLlib](https://spark.apache.org/mllib/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [Tensorflow](https://www.tensorflow.org/decision_forests). See [Installation instructions](README.md#Installation).
+
+
+%package -n python3-dtreeviz
+Summary: A Python 3 library for sci-kit learn, XGBoost, LightGBM, Spark, and TensorFlow decision tree visualization
+Provides: python-dtreeviz
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-dtreeviz
+A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of [gradient boosting machines](http://explained.ai/gradient-boosting/index.html) and [Random Forests](https://en.wikipedia.org/wiki/Random_forest)(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by [R2D3](http://www.r2d3.us/); [A visual introduction to machine learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/). Please see [How to visualize decision trees](http://explained.ai/decision-tree-viz/index.html) for deeper discussion of our decision tree visualization library and the visual design decisions we made.
+
+Currently dtreeviz supports: [scikit-learn](https://scikit-learn.org/stable), [XGBoost](https://xgboost.readthedocs.io/en/latest), [Spark MLlib](https://spark.apache.org/mllib/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [Tensorflow](https://www.tensorflow.org/decision_forests). See [Installation instructions](README.md#Installation).
+
+
+%package help
+Summary: Development documents and examples for dtreeviz
+Provides: python3-dtreeviz-doc
+%description help
+A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of [gradient boosting machines](http://explained.ai/gradient-boosting/index.html) and [Random Forests](https://en.wikipedia.org/wiki/Random_forest)(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by [R2D3](http://www.r2d3.us/); [A visual introduction to machine learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/). Please see [How to visualize decision trees](http://explained.ai/decision-tree-viz/index.html) for deeper discussion of our decision tree visualization library and the visual design decisions we made.
+
+Currently dtreeviz supports: [scikit-learn](https://scikit-learn.org/stable), [XGBoost](https://xgboost.readthedocs.io/en/latest), [Spark MLlib](https://spark.apache.org/mllib/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [Tensorflow](https://www.tensorflow.org/decision_forests). See [Installation instructions](README.md#Installation).
+
+
+%prep
+%autosetup -n dtreeviz-2.2.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-dtreeviz -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 2.2.0-1
+- Package Spec generated