diff options
author | CoprDistGit <infra@openeuler.org> | 2023-04-10 16:06:05 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-04-10 16:06:05 +0000 |
commit | b1013758b51a19460c015209aff4f8a8ecc6245b (patch) | |
tree | 8ea8afc795b718d6d7bb895588d17b4cb41831cc /python-dtreeviz.spec | |
parent | 2e9dac4737a80f85444ab734f13451b1c81b5efc (diff) |
automatic import of python-dtreeviz
Diffstat (limited to 'python-dtreeviz.spec')
-rw-r--r-- | python-dtreeviz.spec | 96 |
1 files changed, 96 insertions, 0 deletions
diff --git a/python-dtreeviz.spec b/python-dtreeviz.spec new file mode 100644 index 0000000..d2cb15e --- /dev/null +++ b/python-dtreeviz.spec @@ -0,0 +1,96 @@ +%global _empty_manifest_terminate_build 0 +Name: python-dtreeviz +Version: 2.2.0 +Release: 1 +Summary: A Python 3 library for sci-kit learn, XGBoost, LightGBM, Spark, and TensorFlow decision tree visualization +License: MIT +URL: https://github.com/parrt/dtreeviz +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a5/da/ddc3f75762c7342c91f3f1388dabcbd1a852ccaafcabd2994900cf2eb934/dtreeviz-2.2.0.tar.gz +BuildArch: noarch + +Requires: python3-graphviz +Requires: python3-pandas +Requires: python3-numpy +Requires: python3-scikit-learn +Requires: python3-matplotlib +Requires: python3-colour +Requires: python3-pytest +Requires: python3-xgboost +Requires: python3-pyspark +Requires: python3-lightgbm +Requires: python3-tensorflow-decision-forests +Requires: python3-lightgbm +Requires: python3-pyspark +Requires: python3-tensorflow-decision-forests +Requires: python3-xgboost + +%description +A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of [gradient boosting machines](http://explained.ai/gradient-boosting/index.html) and [Random Forests](https://en.wikipedia.org/wiki/Random_forest)(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by [R2D3](http://www.r2d3.us/); [A visual introduction to machine learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/). Please see [How to visualize decision trees](http://explained.ai/decision-tree-viz/index.html) for deeper discussion of our decision tree visualization library and the visual design decisions we made. + +Currently dtreeviz supports: [scikit-learn](https://scikit-learn.org/stable), [XGBoost](https://xgboost.readthedocs.io/en/latest), [Spark MLlib](https://spark.apache.org/mllib/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [Tensorflow](https://www.tensorflow.org/decision_forests). See [Installation instructions](README.md#Installation). + + +%package -n python3-dtreeviz +Summary: A Python 3 library for sci-kit learn, XGBoost, LightGBM, Spark, and TensorFlow decision tree visualization +Provides: python-dtreeviz +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-dtreeviz +A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of [gradient boosting machines](http://explained.ai/gradient-boosting/index.html) and [Random Forests](https://en.wikipedia.org/wiki/Random_forest)(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by [R2D3](http://www.r2d3.us/); [A visual introduction to machine learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/). Please see [How to visualize decision trees](http://explained.ai/decision-tree-viz/index.html) for deeper discussion of our decision tree visualization library and the visual design decisions we made. + +Currently dtreeviz supports: [scikit-learn](https://scikit-learn.org/stable), [XGBoost](https://xgboost.readthedocs.io/en/latest), [Spark MLlib](https://spark.apache.org/mllib/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [Tensorflow](https://www.tensorflow.org/decision_forests). See [Installation instructions](README.md#Installation). + + +%package help +Summary: Development documents and examples for dtreeviz +Provides: python3-dtreeviz-doc +%description help +A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of [gradient boosting machines](http://explained.ai/gradient-boosting/index.html) and [Random Forests](https://en.wikipedia.org/wiki/Random_forest)(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by [R2D3](http://www.r2d3.us/); [A visual introduction to machine learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/). Please see [How to visualize decision trees](http://explained.ai/decision-tree-viz/index.html) for deeper discussion of our decision tree visualization library and the visual design decisions we made. + +Currently dtreeviz supports: [scikit-learn](https://scikit-learn.org/stable), [XGBoost](https://xgboost.readthedocs.io/en/latest), [Spark MLlib](https://spark.apache.org/mllib/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [Tensorflow](https://www.tensorflow.org/decision_forests). See [Installation instructions](README.md#Installation). + + +%prep +%autosetup -n dtreeviz-2.2.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-dtreeviz -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 2.2.0-1 +- Package Spec generated |