summaryrefslogtreecommitdiff
path: root/python-dynamo-pandas.spec
blob: bc24c22fe05eb6f34634a1ffd39e358c8e2d64ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
%global _empty_manifest_terminate_build 0
Name:		python-dynamo-pandas
Version:	1.3.0
Release:	1
Summary:	Make working with pandas dataframe and AWS DynamoDB easy.
License:	MIT
URL:		https://github.com/DrGFreeman/dynamo-pandas
Source0:	https://mirrors.aliyun.com/pypi/web/packages/eb/ca/15cf7f8dd4ce86b5d1166cf45d9654d3f664231810672a117666651bf190/dynamo-pandas-1.3.0.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-boto3

%description
    0   player_id     4 non-null      object         
    1   last_play     4 non-null      datetime64[ns] 
    2   play_time     4 non-null      timedelta64[ns]
    3   rating        4 non-null      float64        
    4   bonus_points  3 non-null      Int8           
dtypes: Int8(1), datetime64[ns](1), float64(1), object(1), timedelta64[ns](1)
memory usage: 264.0+ bytes
```
Storing the rows of this dataframe to DynamoDB requires multiple data type conversions.
```python
>>> from dynamo_pandas import put_df, get_df, keys
```
The `put_df` function adds or updates the rows of a dataframe into the specified table, taking care of the required type conversions (the table must be already created and the primary key column(s) be present in the dataframe).
```python
>>> put_df(players_df, table="players")
```
The `get_df` function retrieves the items matching the speficied key(s) from the table into a dataframe.
```python
>>> df = get_df(table="players", keys=[{"player_id": "player_three"}, {"player_id": "player_one"}])
>>> print(df)
   bonus_points     player_id            last_play  rating        play_time
0             4  player_three  2021-01-21 10:22:43     2.5  1 days 14:01:19
1             3    player_one  2021-01-18 22:47:23     4.3  2 days 17:41:55
```
In the case where only a partition key is used, the `keys` function simplifies the generation of the keys list.
```python
>>> df = get_df(table="players", keys=keys(player_id=["player_two", "player_four"]))
>>> print(df)
   bonus_points    player_id            last_play  rating        play_time
0           1.0   player_two  2021-01-19 19:07:54     3.8  0 days 22:07:34
1           NaN  player_four  2021-01-22 13:51:12     4.8  0 days 03:45:49
```
The data types returned by the `get_df` function are basic types and no automatic type conversion is attempted.
```python
>>> df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 5 columns):

%package -n python3-dynamo-pandas
Summary:	Make working with pandas dataframe and AWS DynamoDB easy.
Provides:	python-dynamo-pandas
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-dynamo-pandas
    0   player_id     4 non-null      object         
    1   last_play     4 non-null      datetime64[ns] 
    2   play_time     4 non-null      timedelta64[ns]
    3   rating        4 non-null      float64        
    4   bonus_points  3 non-null      Int8           
dtypes: Int8(1), datetime64[ns](1), float64(1), object(1), timedelta64[ns](1)
memory usage: 264.0+ bytes
```
Storing the rows of this dataframe to DynamoDB requires multiple data type conversions.
```python
>>> from dynamo_pandas import put_df, get_df, keys
```
The `put_df` function adds or updates the rows of a dataframe into the specified table, taking care of the required type conversions (the table must be already created and the primary key column(s) be present in the dataframe).
```python
>>> put_df(players_df, table="players")
```
The `get_df` function retrieves the items matching the speficied key(s) from the table into a dataframe.
```python
>>> df = get_df(table="players", keys=[{"player_id": "player_three"}, {"player_id": "player_one"}])
>>> print(df)
   bonus_points     player_id            last_play  rating        play_time
0             4  player_three  2021-01-21 10:22:43     2.5  1 days 14:01:19
1             3    player_one  2021-01-18 22:47:23     4.3  2 days 17:41:55
```
In the case where only a partition key is used, the `keys` function simplifies the generation of the keys list.
```python
>>> df = get_df(table="players", keys=keys(player_id=["player_two", "player_four"]))
>>> print(df)
   bonus_points    player_id            last_play  rating        play_time
0           1.0   player_two  2021-01-19 19:07:54     3.8  0 days 22:07:34
1           NaN  player_four  2021-01-22 13:51:12     4.8  0 days 03:45:49
```
The data types returned by the `get_df` function are basic types and no automatic type conversion is attempted.
```python
>>> df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 5 columns):

%package help
Summary:	Development documents and examples for dynamo-pandas
Provides:	python3-dynamo-pandas-doc
%description help
    0   player_id     4 non-null      object         
    1   last_play     4 non-null      datetime64[ns] 
    2   play_time     4 non-null      timedelta64[ns]
    3   rating        4 non-null      float64        
    4   bonus_points  3 non-null      Int8           
dtypes: Int8(1), datetime64[ns](1), float64(1), object(1), timedelta64[ns](1)
memory usage: 264.0+ bytes
```
Storing the rows of this dataframe to DynamoDB requires multiple data type conversions.
```python
>>> from dynamo_pandas import put_df, get_df, keys
```
The `put_df` function adds or updates the rows of a dataframe into the specified table, taking care of the required type conversions (the table must be already created and the primary key column(s) be present in the dataframe).
```python
>>> put_df(players_df, table="players")
```
The `get_df` function retrieves the items matching the speficied key(s) from the table into a dataframe.
```python
>>> df = get_df(table="players", keys=[{"player_id": "player_three"}, {"player_id": "player_one"}])
>>> print(df)
   bonus_points     player_id            last_play  rating        play_time
0             4  player_three  2021-01-21 10:22:43     2.5  1 days 14:01:19
1             3    player_one  2021-01-18 22:47:23     4.3  2 days 17:41:55
```
In the case where only a partition key is used, the `keys` function simplifies the generation of the keys list.
```python
>>> df = get_df(table="players", keys=keys(player_id=["player_two", "player_four"]))
>>> print(df)
   bonus_points    player_id            last_play  rating        play_time
0           1.0   player_two  2021-01-19 19:07:54     3.8  0 days 22:07:34
1           NaN  player_four  2021-01-22 13:51:12     4.8  0 days 03:45:49
```
The data types returned by the `get_df` function are basic types and no automatic type conversion is attempted.
```python
>>> df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 5 columns):

%prep
%autosetup -n dynamo-pandas-1.3.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-dynamo-pandas -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.0-1
- Package Spec generated