1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
|
%global _empty_manifest_terminate_build 0
Name: python-DZDutils
Version: 1.7.4
Release: 1
Summary: Tool collection from the DZD Devs
License: MIT
URL: https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d9/52/6fd5162e87f01589b7f3413b1016c1b5cef7b300e68d5c0859c66a0dbcda/DZDutils-1.7.4.tar.gz
BuildArch: noarch
Requires: python3-py2neo
Requires: python3-numpy
Requires: python3-linetimer
Requires: python3-graphio
Requires: python3-pandas
%description
# DZDutils
## About
**Maintainer**: tim.bleimehl@dzd-ev.de
**Licence**: MIT
**Purpose**: Collection of homemade Python tools of the German Center for Diabetes Research
[[_TOC_]]
## Install
`pip3 install DZDutils`
or if you need the current dev version:
`pip3 install git+https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils.git`
## Modules
### DZDutils.inspect
#### object2html
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/inspect/object2html.py#L58)
Opens the webbrowser and let you inspect any object / dict with jquery jsonviewer
```python
from DZDutils.inspect import object2html
my_ultra_complex_dict = {"key":"val"}
object2html(my_ultra_complex_dict)
```
### DZDutils.list
#### chunks
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/list.py#L5)
Breaks up a list in shorter lists of given length
```python
from DZDutils.list import chunks
my_ultra_long_list = [1,2,3,4,5,6,7,8,9,10]
for chunk in chunks(my_ultra_long_list, 3)
print(chunk)
```
Output:
```python
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]
```
#### divide
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/list.py#L12)
Breaks up a list in a given amount of shorter lists
```python
from DZDutils.list import divide
my_ultra_long_list = [1,2,3,4,5,6,7,8,9,10]
for chunk in divide(my_ultra_long_list, 3)
print(chunk)
```
Output:
```python
[1, 2, 3, 4]
[5, 6, 7]
[8, 9, 10]
```
### DZDutils.neo4j
#### wait_for_db_boot
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/wait_for_db_boot.py)
Wait for a neo4j to boot up. If timeout is expired it will raise the last error of the connection expception for debuging.
The argument `neo4j` must be a dict of py2neo.Graph() arguments -> https://py2neo.org/2021.1/profiles.html#individual-settings
```python
from DZDutils.neo4j import wait_for_db_boot
wait_for_db_boot(neo4j={"host": "localhost"}, timeout_sec=120)
```
#### wait_for_index_build_up
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/wait_for_index_build_up.py)
Provide a list of index names and wait for them to be online
```python
import py2neo
from DZDutils.neo4j import wait_for_index_build_up
g = py2neo.Graph()
g.run("CREATE FULLTEXT INDEX FTI_1 IF NOT EXISTS FOR (n:MyNode) ON EACH [n.my_property]")
g.run("CREATE INDEX INDEX_2 IF NOT EXISTS FOR (n:MyNode) ON EACH [n.my_property]")
g.run("CREATE FULLTEXT INDEX FTI_3 IF NOT EXISTS FOR (n:MyNode) ON EACH [n.my_property]")
wait_for_fulltextindex_build_up(graph=g,index_names=["FTI_1","INDEX_2","FTI_3"])
print("Indexes are usable now")
```
#### nodes_to_buckets_distributor
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/nodes_to_buckets_distributor.py)
Divide a bunch of nodes into multiple buckets (labels with a prefix and sequential numbering e.b. "BucketLabel1, BucketLabel2, ...")
Supply a query return nodes. Get a list of str containg the buckets label names
```python
import py2neo
from DZDutils.neo4j import nodes_to_buckets_distributor
g = py2neo.Graph()
# Create some testnodes
g.run(f"UNWIND range(1,10) as i CREATE (:MyNodeLabel)")
labels = nodes_to_buckets_distributor(
g,
query=f"MATCH (n:MyNodeLabel) return n",
bucket_count=3,
bucket_label_prefix="Bucket",
)
print(labels)
```
Output:
`['Bucket0','Bucket1','Bucket2']`
Each of our `:MyNodeLabel`-Nodes has now applied one of the bucket labels
#### run_periodic_iterate
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/run_periodic_iterate.py)
Abstraction function for [`apoc.periodic.iterate`](https://neo4j.com/labs/apoc/4.1/overview/apoc.periodic/apoc.periodic.iterate/) with proper error handling and less of the string fumbling
```python
import py2neo
from DZDutils.neo4j import run_periodic_iterate
g = py2neo.Graph()
# Create some node per iterate
run_periodic_iterate(
g,
cypherIterate="UNWIND range(1,100) as i return i",
cypherAction="CREATE (n:_TestNode) SET n.index = i",
parallel=True,
)
# set some props per iterate
run_periodic_iterate(
g,
cypherIterate="MATCH (n:_TestNode) return n",
cypherAction="SET n.prop = 'MyVal'",
parallel=True,
)
```
##### Error Handling
When using `apoc.periodic.iterate` manual you have to parse the result table for errors and interpret the result if and how a query failed.
With `run_periodic_iterate` you dont have to anymore.
Lets have an example and write some faulty query
```python
import py2neo
from DZDutils.neo4j import run_periodic_iterate
g = py2neo.Graph()
# Create some node per iterate
run_periodic_iterate(
g,
cypherIterate="UNWIND range(1,100) as i return i",
cypherAction="f*** ohnooo i cant write proper cypher",
parallel=True,
)
```
This will result in an exception:
```
DZDutils.neo4j.Neo4jPeriodicIterateError: Error on 100 of 100 operations. ErrorMessages:
Invalid input 'f': expected
","
"CALL"
"CREATE"
[...]
"WITH"
<EOF> (line 1, column 46 (offset: 45))
"UNWIND $_batch AS _batch WITH _batch.i AS i f*** ohnooo i cant write proper cypher"
```
As wee see we get immediately feedback if and how the query failed
#### LuceneTextCleanerTools
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/LuceneTextCleanerTools.py)
`LuceneTextCleanerTools` is a class with some functions/tools to prepare node properties to be used as input for a lucene fulltext search.
e.g. You want to search for `(:Actor).name` in any `(:Movie).description`. In real word data you will mostly have some noise in the Actor names:
* Some Lucene operators like "-" or "OR"
* Or maybe some generic words like "the" which will drown any meaningful results
LuceneTextCleanerTools will help you to sanitize your data.
Lets get started with a small example
```python
import py2neo
import graphio
from DZDutils.neo4j import LuceneTextCleanerTools
g = py2neo.Graph()
# lets create some testdata
actorset = graphio.NodeSet(["Actor"], ["name"])
# lets assume our actor names came from a messy source;
for actor in [
"The",
"The.Rock",
"Catherine Zeta-Jones",
"Keith OR Kevin Schultz",
"32567221",
]:
actorset.add_node({"name": actor})
movieset = graphio.NodeSet(["Movie"], ["name"])
for movie_name, movie_desc in [
(
"Hercules",
"A movie with The Rock and other people. maybe someone is named Keith",
),
(
"The Iron Horse",
"An old movie with the twin actors Keith and Kevin Schultz. Never seen it; 5 stars nevertheless. its old and the title is cool",
),
(
"Titanic",
"A movie with The ship titanic and Catherine Zeta-Jones and maybe someone who is named Keith",
),
]:
movieset.add_node({"name": movie_name, "desc": movie_desc})
actorset.create_index(g)
actorset.merge(g)
movieset.create_index(g)
movieset.merge(g)
# We have our test data. lets start...
# If we now would do create a fulltext index on `(:Movie).desc` and do a search by every actor name and create a relationship on every actor appearing in the description our result would be all over the place
# e.g.
# * `Keith OR Kevin Schultz` would be connected to every movie because Keith comes up in every description. But actually we wanted to match `Keith OR Kevin Schultz` but `OR` is an lucene operator
# * `Catherine Zeta-Jones` would appear in no description because the Hyphen expludes anything with `Jones`
# * `The.Rock` would appeat in no description because the data is dirty and there is a dot in his name
# lets sanitize our actor names with LuceneTextCleanerTools
txt = LuceneTextCleanerTools(g)
txt.create_sanitized_property_for_lucene_index(
labels=["Actor"],
property="name",
target_property="name_clean",
min_word_length=2,
exlude_num_only=False,
to_be_escape_chars=["-"],
)
# this will cast our actor names to:
# * "The.Rock" -> "The Rock"
# * "Catherine Zeta-Jones" -> "Catherine Zeta\-Jones"
# * "Keith OR Kevin Schultz" -> "Keith Kevin Schultz"
# The new value will be writen into a new property `name_clean`. No information is lost
# optionaly, depending on what we want to do, we also can import common words in many languages
txt.import_common_words(
top_n_words_per_language=4000, min_word_length=2, max_word_length=6
)
# we can now tag actor names that are not suitable for full text matching
txt.find_sanitized_properties_unsuitable_for_lucene_index(
match_labels=["Actor"],
check_property="name_clean",
tag_with_labels=["_OmitFullTextMatch"],
match_properties_equal_to_common_word=True,
)
# this would tag the Actors `32567221` and `the` as unsuitable. these values are obviously garbage or to common to match anything meaningful
# Now we can do our lucene full test matching on clean data :)
```
For further actions have a look at `TextIndexBucketProcessor`
#### TextIndexBucketProcessor
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/TextIndexBucketProcessor.py)
Running a [`db.index.fulltext.queryNodes`](https://neo4j.com/docs/operations-manual/current/reference/procedures/#procedure_db_index_fulltext_querynodes) is a very powerful but also expensiv query.
When running `db.index.fulltext.queryNodes` often against a lot of data it wont scale well.
For example, in our case, finding thousand of genes (and their synonyms) in million of scientific papers will take a very long time.
The proper solution would be to run multiple queries at a time. But what if you want to generate Nodes and new Relations based on the query result?
You would end up in node locking situations and wont gain much perfomance or even run in timeouts/deadlocks (depending on your actions and/or setup)
Here is where `TextIndexBucketProcessor` can help you:
`TextIndexBucketProcessor` will seperate you data into multiple "Buckets" and do your queries and transforming-actions isolated in these buckets.
You can now run multiple actions at a time where you usally would end up in Lock situations.
Lets have an example:
(The demodata generator source is [here](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/TextIndexBucketProcessor.py#L190))
```python
import py2neo
from DZDutils.neo4j import TextIndexBucketProcessor, create_demo_data
g = py2neo.Graph()
# lets create some testdata first.
# * We create some nodes `(:AbstractText)` nodes with long texts in the property `text`
# * We create some nodes `(:Gene)` nodes with gene IDs in the property `sid`
create_demo_data(g)
# Our goal is now to connect `(:Gene)` nodes to `(:AbstractText)` nodes when the gene sid appears in the abstracts text
# First we create an instance of TextIndexBucketProcessor with a conneciton to our database.
# `buckets_count_per_collection` defines how many isolated buckets we want to run at one time. In other words: The CPU core count we have on our database available
ti_proc = TextIndexBucketProcessor(graph=g, buckets_count_per_collection=6)
# We add a query which contains the nodes with the words we want to search for
ti_proc.set_iterate_node_collection(
name="gene", query="MATCH (n:Gene) WHERE NOT n:_OmitMatch return n"
)
# Next we add a query which contains the nodes and property name we want to scan.
# You also replace `fulltext_index_properties` with `text_index_property` to use a CONTAINS query instead of fulltext index
ti_proc.set_text_node_collection(
name="abstract",
query="MATCH (n:AbstractText) return n",
fulltext_index_properties=["text"],
)
# Now we define the action we want to apply on positive search results, set the property we search for and start our full text index search
# Mind the names of the nodes: its the name we defined in `add_iterate_node_collection` and `add_fulltext_node_collection`
ti_proc.run_text_index(
iterate_property="sid", cypher_action="MERGE (abstract)-[r:MENTIONS]->(gene)"
)
# At the end we clean up our bucket labels
ti_proc.clean_up()
```
We now have connected genes that appear in abstracts and did that process with the use of multiple CPU cores and avoided any nodelocking.
This was 4-times faster (because of `buckets_count_per_collection=4`) as just loop throug all genes and send them one by one to `db.index.fulltext.queryNodes`
> :warning: This is a prove of concept with a very narrow scope. You can not modify the `db.index.fulltext.queryNodes`-call which makes this tool rather unflexibel atm. Expect improvements in future versions :)
%package -n python3-DZDutils
Summary: Tool collection from the DZD Devs
Provides: python-DZDutils
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-DZDutils
# DZDutils
## About
**Maintainer**: tim.bleimehl@dzd-ev.de
**Licence**: MIT
**Purpose**: Collection of homemade Python tools of the German Center for Diabetes Research
[[_TOC_]]
## Install
`pip3 install DZDutils`
or if you need the current dev version:
`pip3 install git+https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils.git`
## Modules
### DZDutils.inspect
#### object2html
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/inspect/object2html.py#L58)
Opens the webbrowser and let you inspect any object / dict with jquery jsonviewer
```python
from DZDutils.inspect import object2html
my_ultra_complex_dict = {"key":"val"}
object2html(my_ultra_complex_dict)
```
### DZDutils.list
#### chunks
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/list.py#L5)
Breaks up a list in shorter lists of given length
```python
from DZDutils.list import chunks
my_ultra_long_list = [1,2,3,4,5,6,7,8,9,10]
for chunk in chunks(my_ultra_long_list, 3)
print(chunk)
```
Output:
```python
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]
```
#### divide
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/list.py#L12)
Breaks up a list in a given amount of shorter lists
```python
from DZDutils.list import divide
my_ultra_long_list = [1,2,3,4,5,6,7,8,9,10]
for chunk in divide(my_ultra_long_list, 3)
print(chunk)
```
Output:
```python
[1, 2, 3, 4]
[5, 6, 7]
[8, 9, 10]
```
### DZDutils.neo4j
#### wait_for_db_boot
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/wait_for_db_boot.py)
Wait for a neo4j to boot up. If timeout is expired it will raise the last error of the connection expception for debuging.
The argument `neo4j` must be a dict of py2neo.Graph() arguments -> https://py2neo.org/2021.1/profiles.html#individual-settings
```python
from DZDutils.neo4j import wait_for_db_boot
wait_for_db_boot(neo4j={"host": "localhost"}, timeout_sec=120)
```
#### wait_for_index_build_up
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/wait_for_index_build_up.py)
Provide a list of index names and wait for them to be online
```python
import py2neo
from DZDutils.neo4j import wait_for_index_build_up
g = py2neo.Graph()
g.run("CREATE FULLTEXT INDEX FTI_1 IF NOT EXISTS FOR (n:MyNode) ON EACH [n.my_property]")
g.run("CREATE INDEX INDEX_2 IF NOT EXISTS FOR (n:MyNode) ON EACH [n.my_property]")
g.run("CREATE FULLTEXT INDEX FTI_3 IF NOT EXISTS FOR (n:MyNode) ON EACH [n.my_property]")
wait_for_fulltextindex_build_up(graph=g,index_names=["FTI_1","INDEX_2","FTI_3"])
print("Indexes are usable now")
```
#### nodes_to_buckets_distributor
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/nodes_to_buckets_distributor.py)
Divide a bunch of nodes into multiple buckets (labels with a prefix and sequential numbering e.b. "BucketLabel1, BucketLabel2, ...")
Supply a query return nodes. Get a list of str containg the buckets label names
```python
import py2neo
from DZDutils.neo4j import nodes_to_buckets_distributor
g = py2neo.Graph()
# Create some testnodes
g.run(f"UNWIND range(1,10) as i CREATE (:MyNodeLabel)")
labels = nodes_to_buckets_distributor(
g,
query=f"MATCH (n:MyNodeLabel) return n",
bucket_count=3,
bucket_label_prefix="Bucket",
)
print(labels)
```
Output:
`['Bucket0','Bucket1','Bucket2']`
Each of our `:MyNodeLabel`-Nodes has now applied one of the bucket labels
#### run_periodic_iterate
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/run_periodic_iterate.py)
Abstraction function for [`apoc.periodic.iterate`](https://neo4j.com/labs/apoc/4.1/overview/apoc.periodic/apoc.periodic.iterate/) with proper error handling and less of the string fumbling
```python
import py2neo
from DZDutils.neo4j import run_periodic_iterate
g = py2neo.Graph()
# Create some node per iterate
run_periodic_iterate(
g,
cypherIterate="UNWIND range(1,100) as i return i",
cypherAction="CREATE (n:_TestNode) SET n.index = i",
parallel=True,
)
# set some props per iterate
run_periodic_iterate(
g,
cypherIterate="MATCH (n:_TestNode) return n",
cypherAction="SET n.prop = 'MyVal'",
parallel=True,
)
```
##### Error Handling
When using `apoc.periodic.iterate` manual you have to parse the result table for errors and interpret the result if and how a query failed.
With `run_periodic_iterate` you dont have to anymore.
Lets have an example and write some faulty query
```python
import py2neo
from DZDutils.neo4j import run_periodic_iterate
g = py2neo.Graph()
# Create some node per iterate
run_periodic_iterate(
g,
cypherIterate="UNWIND range(1,100) as i return i",
cypherAction="f*** ohnooo i cant write proper cypher",
parallel=True,
)
```
This will result in an exception:
```
DZDutils.neo4j.Neo4jPeriodicIterateError: Error on 100 of 100 operations. ErrorMessages:
Invalid input 'f': expected
","
"CALL"
"CREATE"
[...]
"WITH"
<EOF> (line 1, column 46 (offset: 45))
"UNWIND $_batch AS _batch WITH _batch.i AS i f*** ohnooo i cant write proper cypher"
```
As wee see we get immediately feedback if and how the query failed
#### LuceneTextCleanerTools
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/LuceneTextCleanerTools.py)
`LuceneTextCleanerTools` is a class with some functions/tools to prepare node properties to be used as input for a lucene fulltext search.
e.g. You want to search for `(:Actor).name` in any `(:Movie).description`. In real word data you will mostly have some noise in the Actor names:
* Some Lucene operators like "-" or "OR"
* Or maybe some generic words like "the" which will drown any meaningful results
LuceneTextCleanerTools will help you to sanitize your data.
Lets get started with a small example
```python
import py2neo
import graphio
from DZDutils.neo4j import LuceneTextCleanerTools
g = py2neo.Graph()
# lets create some testdata
actorset = graphio.NodeSet(["Actor"], ["name"])
# lets assume our actor names came from a messy source;
for actor in [
"The",
"The.Rock",
"Catherine Zeta-Jones",
"Keith OR Kevin Schultz",
"32567221",
]:
actorset.add_node({"name": actor})
movieset = graphio.NodeSet(["Movie"], ["name"])
for movie_name, movie_desc in [
(
"Hercules",
"A movie with The Rock and other people. maybe someone is named Keith",
),
(
"The Iron Horse",
"An old movie with the twin actors Keith and Kevin Schultz. Never seen it; 5 stars nevertheless. its old and the title is cool",
),
(
"Titanic",
"A movie with The ship titanic and Catherine Zeta-Jones and maybe someone who is named Keith",
),
]:
movieset.add_node({"name": movie_name, "desc": movie_desc})
actorset.create_index(g)
actorset.merge(g)
movieset.create_index(g)
movieset.merge(g)
# We have our test data. lets start...
# If we now would do create a fulltext index on `(:Movie).desc` and do a search by every actor name and create a relationship on every actor appearing in the description our result would be all over the place
# e.g.
# * `Keith OR Kevin Schultz` would be connected to every movie because Keith comes up in every description. But actually we wanted to match `Keith OR Kevin Schultz` but `OR` is an lucene operator
# * `Catherine Zeta-Jones` would appear in no description because the Hyphen expludes anything with `Jones`
# * `The.Rock` would appeat in no description because the data is dirty and there is a dot in his name
# lets sanitize our actor names with LuceneTextCleanerTools
txt = LuceneTextCleanerTools(g)
txt.create_sanitized_property_for_lucene_index(
labels=["Actor"],
property="name",
target_property="name_clean",
min_word_length=2,
exlude_num_only=False,
to_be_escape_chars=["-"],
)
# this will cast our actor names to:
# * "The.Rock" -> "The Rock"
# * "Catherine Zeta-Jones" -> "Catherine Zeta\-Jones"
# * "Keith OR Kevin Schultz" -> "Keith Kevin Schultz"
# The new value will be writen into a new property `name_clean`. No information is lost
# optionaly, depending on what we want to do, we also can import common words in many languages
txt.import_common_words(
top_n_words_per_language=4000, min_word_length=2, max_word_length=6
)
# we can now tag actor names that are not suitable for full text matching
txt.find_sanitized_properties_unsuitable_for_lucene_index(
match_labels=["Actor"],
check_property="name_clean",
tag_with_labels=["_OmitFullTextMatch"],
match_properties_equal_to_common_word=True,
)
# this would tag the Actors `32567221` and `the` as unsuitable. these values are obviously garbage or to common to match anything meaningful
# Now we can do our lucene full test matching on clean data :)
```
For further actions have a look at `TextIndexBucketProcessor`
#### TextIndexBucketProcessor
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/TextIndexBucketProcessor.py)
Running a [`db.index.fulltext.queryNodes`](https://neo4j.com/docs/operations-manual/current/reference/procedures/#procedure_db_index_fulltext_querynodes) is a very powerful but also expensiv query.
When running `db.index.fulltext.queryNodes` often against a lot of data it wont scale well.
For example, in our case, finding thousand of genes (and their synonyms) in million of scientific papers will take a very long time.
The proper solution would be to run multiple queries at a time. But what if you want to generate Nodes and new Relations based on the query result?
You would end up in node locking situations and wont gain much perfomance or even run in timeouts/deadlocks (depending on your actions and/or setup)
Here is where `TextIndexBucketProcessor` can help you:
`TextIndexBucketProcessor` will seperate you data into multiple "Buckets" and do your queries and transforming-actions isolated in these buckets.
You can now run multiple actions at a time where you usally would end up in Lock situations.
Lets have an example:
(The demodata generator source is [here](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/TextIndexBucketProcessor.py#L190))
```python
import py2neo
from DZDutils.neo4j import TextIndexBucketProcessor, create_demo_data
g = py2neo.Graph()
# lets create some testdata first.
# * We create some nodes `(:AbstractText)` nodes with long texts in the property `text`
# * We create some nodes `(:Gene)` nodes with gene IDs in the property `sid`
create_demo_data(g)
# Our goal is now to connect `(:Gene)` nodes to `(:AbstractText)` nodes when the gene sid appears in the abstracts text
# First we create an instance of TextIndexBucketProcessor with a conneciton to our database.
# `buckets_count_per_collection` defines how many isolated buckets we want to run at one time. In other words: The CPU core count we have on our database available
ti_proc = TextIndexBucketProcessor(graph=g, buckets_count_per_collection=6)
# We add a query which contains the nodes with the words we want to search for
ti_proc.set_iterate_node_collection(
name="gene", query="MATCH (n:Gene) WHERE NOT n:_OmitMatch return n"
)
# Next we add a query which contains the nodes and property name we want to scan.
# You also replace `fulltext_index_properties` with `text_index_property` to use a CONTAINS query instead of fulltext index
ti_proc.set_text_node_collection(
name="abstract",
query="MATCH (n:AbstractText) return n",
fulltext_index_properties=["text"],
)
# Now we define the action we want to apply on positive search results, set the property we search for and start our full text index search
# Mind the names of the nodes: its the name we defined in `add_iterate_node_collection` and `add_fulltext_node_collection`
ti_proc.run_text_index(
iterate_property="sid", cypher_action="MERGE (abstract)-[r:MENTIONS]->(gene)"
)
# At the end we clean up our bucket labels
ti_proc.clean_up()
```
We now have connected genes that appear in abstracts and did that process with the use of multiple CPU cores and avoided any nodelocking.
This was 4-times faster (because of `buckets_count_per_collection=4`) as just loop throug all genes and send them one by one to `db.index.fulltext.queryNodes`
> :warning: This is a prove of concept with a very narrow scope. You can not modify the `db.index.fulltext.queryNodes`-call which makes this tool rather unflexibel atm. Expect improvements in future versions :)
%package help
Summary: Development documents and examples for DZDutils
Provides: python3-DZDutils-doc
%description help
# DZDutils
## About
**Maintainer**: tim.bleimehl@dzd-ev.de
**Licence**: MIT
**Purpose**: Collection of homemade Python tools of the German Center for Diabetes Research
[[_TOC_]]
## Install
`pip3 install DZDutils`
or if you need the current dev version:
`pip3 install git+https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils.git`
## Modules
### DZDutils.inspect
#### object2html
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/inspect/object2html.py#L58)
Opens the webbrowser and let you inspect any object / dict with jquery jsonviewer
```python
from DZDutils.inspect import object2html
my_ultra_complex_dict = {"key":"val"}
object2html(my_ultra_complex_dict)
```
### DZDutils.list
#### chunks
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/list.py#L5)
Breaks up a list in shorter lists of given length
```python
from DZDutils.list import chunks
my_ultra_long_list = [1,2,3,4,5,6,7,8,9,10]
for chunk in chunks(my_ultra_long_list, 3)
print(chunk)
```
Output:
```python
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]
```
#### divide
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/list.py#L12)
Breaks up a list in a given amount of shorter lists
```python
from DZDutils.list import divide
my_ultra_long_list = [1,2,3,4,5,6,7,8,9,10]
for chunk in divide(my_ultra_long_list, 3)
print(chunk)
```
Output:
```python
[1, 2, 3, 4]
[5, 6, 7]
[8, 9, 10]
```
### DZDutils.neo4j
#### wait_for_db_boot
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/wait_for_db_boot.py)
Wait for a neo4j to boot up. If timeout is expired it will raise the last error of the connection expception for debuging.
The argument `neo4j` must be a dict of py2neo.Graph() arguments -> https://py2neo.org/2021.1/profiles.html#individual-settings
```python
from DZDutils.neo4j import wait_for_db_boot
wait_for_db_boot(neo4j={"host": "localhost"}, timeout_sec=120)
```
#### wait_for_index_build_up
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/wait_for_index_build_up.py)
Provide a list of index names and wait for them to be online
```python
import py2neo
from DZDutils.neo4j import wait_for_index_build_up
g = py2neo.Graph()
g.run("CREATE FULLTEXT INDEX FTI_1 IF NOT EXISTS FOR (n:MyNode) ON EACH [n.my_property]")
g.run("CREATE INDEX INDEX_2 IF NOT EXISTS FOR (n:MyNode) ON EACH [n.my_property]")
g.run("CREATE FULLTEXT INDEX FTI_3 IF NOT EXISTS FOR (n:MyNode) ON EACH [n.my_property]")
wait_for_fulltextindex_build_up(graph=g,index_names=["FTI_1","INDEX_2","FTI_3"])
print("Indexes are usable now")
```
#### nodes_to_buckets_distributor
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/nodes_to_buckets_distributor.py)
Divide a bunch of nodes into multiple buckets (labels with a prefix and sequential numbering e.b. "BucketLabel1, BucketLabel2, ...")
Supply a query return nodes. Get a list of str containg the buckets label names
```python
import py2neo
from DZDutils.neo4j import nodes_to_buckets_distributor
g = py2neo.Graph()
# Create some testnodes
g.run(f"UNWIND range(1,10) as i CREATE (:MyNodeLabel)")
labels = nodes_to_buckets_distributor(
g,
query=f"MATCH (n:MyNodeLabel) return n",
bucket_count=3,
bucket_label_prefix="Bucket",
)
print(labels)
```
Output:
`['Bucket0','Bucket1','Bucket2']`
Each of our `:MyNodeLabel`-Nodes has now applied one of the bucket labels
#### run_periodic_iterate
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/tools/run_periodic_iterate.py)
Abstraction function for [`apoc.periodic.iterate`](https://neo4j.com/labs/apoc/4.1/overview/apoc.periodic/apoc.periodic.iterate/) with proper error handling and less of the string fumbling
```python
import py2neo
from DZDutils.neo4j import run_periodic_iterate
g = py2neo.Graph()
# Create some node per iterate
run_periodic_iterate(
g,
cypherIterate="UNWIND range(1,100) as i return i",
cypherAction="CREATE (n:_TestNode) SET n.index = i",
parallel=True,
)
# set some props per iterate
run_periodic_iterate(
g,
cypherIterate="MATCH (n:_TestNode) return n",
cypherAction="SET n.prop = 'MyVal'",
parallel=True,
)
```
##### Error Handling
When using `apoc.periodic.iterate` manual you have to parse the result table for errors and interpret the result if and how a query failed.
With `run_periodic_iterate` you dont have to anymore.
Lets have an example and write some faulty query
```python
import py2neo
from DZDutils.neo4j import run_periodic_iterate
g = py2neo.Graph()
# Create some node per iterate
run_periodic_iterate(
g,
cypherIterate="UNWIND range(1,100) as i return i",
cypherAction="f*** ohnooo i cant write proper cypher",
parallel=True,
)
```
This will result in an exception:
```
DZDutils.neo4j.Neo4jPeriodicIterateError: Error on 100 of 100 operations. ErrorMessages:
Invalid input 'f': expected
","
"CALL"
"CREATE"
[...]
"WITH"
<EOF> (line 1, column 46 (offset: 45))
"UNWIND $_batch AS _batch WITH _batch.i AS i f*** ohnooo i cant write proper cypher"
```
As wee see we get immediately feedback if and how the query failed
#### LuceneTextCleanerTools
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/LuceneTextCleanerTools.py)
`LuceneTextCleanerTools` is a class with some functions/tools to prepare node properties to be used as input for a lucene fulltext search.
e.g. You want to search for `(:Actor).name` in any `(:Movie).description`. In real word data you will mostly have some noise in the Actor names:
* Some Lucene operators like "-" or "OR"
* Or maybe some generic words like "the" which will drown any meaningful results
LuceneTextCleanerTools will help you to sanitize your data.
Lets get started with a small example
```python
import py2neo
import graphio
from DZDutils.neo4j import LuceneTextCleanerTools
g = py2neo.Graph()
# lets create some testdata
actorset = graphio.NodeSet(["Actor"], ["name"])
# lets assume our actor names came from a messy source;
for actor in [
"The",
"The.Rock",
"Catherine Zeta-Jones",
"Keith OR Kevin Schultz",
"32567221",
]:
actorset.add_node({"name": actor})
movieset = graphio.NodeSet(["Movie"], ["name"])
for movie_name, movie_desc in [
(
"Hercules",
"A movie with The Rock and other people. maybe someone is named Keith",
),
(
"The Iron Horse",
"An old movie with the twin actors Keith and Kevin Schultz. Never seen it; 5 stars nevertheless. its old and the title is cool",
),
(
"Titanic",
"A movie with The ship titanic and Catherine Zeta-Jones and maybe someone who is named Keith",
),
]:
movieset.add_node({"name": movie_name, "desc": movie_desc})
actorset.create_index(g)
actorset.merge(g)
movieset.create_index(g)
movieset.merge(g)
# We have our test data. lets start...
# If we now would do create a fulltext index on `(:Movie).desc` and do a search by every actor name and create a relationship on every actor appearing in the description our result would be all over the place
# e.g.
# * `Keith OR Kevin Schultz` would be connected to every movie because Keith comes up in every description. But actually we wanted to match `Keith OR Kevin Schultz` but `OR` is an lucene operator
# * `Catherine Zeta-Jones` would appear in no description because the Hyphen expludes anything with `Jones`
# * `The.Rock` would appeat in no description because the data is dirty and there is a dot in his name
# lets sanitize our actor names with LuceneTextCleanerTools
txt = LuceneTextCleanerTools(g)
txt.create_sanitized_property_for_lucene_index(
labels=["Actor"],
property="name",
target_property="name_clean",
min_word_length=2,
exlude_num_only=False,
to_be_escape_chars=["-"],
)
# this will cast our actor names to:
# * "The.Rock" -> "The Rock"
# * "Catherine Zeta-Jones" -> "Catherine Zeta\-Jones"
# * "Keith OR Kevin Schultz" -> "Keith Kevin Schultz"
# The new value will be writen into a new property `name_clean`. No information is lost
# optionaly, depending on what we want to do, we also can import common words in many languages
txt.import_common_words(
top_n_words_per_language=4000, min_word_length=2, max_word_length=6
)
# we can now tag actor names that are not suitable for full text matching
txt.find_sanitized_properties_unsuitable_for_lucene_index(
match_labels=["Actor"],
check_property="name_clean",
tag_with_labels=["_OmitFullTextMatch"],
match_properties_equal_to_common_word=True,
)
# this would tag the Actors `32567221` and `the` as unsuitable. these values are obviously garbage or to common to match anything meaningful
# Now we can do our lucene full test matching on clean data :)
```
For further actions have a look at `TextIndexBucketProcessor`
#### TextIndexBucketProcessor
[code](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/TextIndexBucketProcessor.py)
Running a [`db.index.fulltext.queryNodes`](https://neo4j.com/docs/operations-manual/current/reference/procedures/#procedure_db_index_fulltext_querynodes) is a very powerful but also expensiv query.
When running `db.index.fulltext.queryNodes` often against a lot of data it wont scale well.
For example, in our case, finding thousand of genes (and their synonyms) in million of scientific papers will take a very long time.
The proper solution would be to run multiple queries at a time. But what if you want to generate Nodes and new Relations based on the query result?
You would end up in node locking situations and wont gain much perfomance or even run in timeouts/deadlocks (depending on your actions and/or setup)
Here is where `TextIndexBucketProcessor` can help you:
`TextIndexBucketProcessor` will seperate you data into multiple "Buckets" and do your queries and transforming-actions isolated in these buckets.
You can now run multiple actions at a time where you usally would end up in Lock situations.
Lets have an example:
(The demodata generator source is [here](https://git.connect.dzd-ev.de/dzdpythonmodules/dzdutils/-/blob/master/DZDutils/neo4j/TextIndexBucketProcessor.py#L190))
```python
import py2neo
from DZDutils.neo4j import TextIndexBucketProcessor, create_demo_data
g = py2neo.Graph()
# lets create some testdata first.
# * We create some nodes `(:AbstractText)` nodes with long texts in the property `text`
# * We create some nodes `(:Gene)` nodes with gene IDs in the property `sid`
create_demo_data(g)
# Our goal is now to connect `(:Gene)` nodes to `(:AbstractText)` nodes when the gene sid appears in the abstracts text
# First we create an instance of TextIndexBucketProcessor with a conneciton to our database.
# `buckets_count_per_collection` defines how many isolated buckets we want to run at one time. In other words: The CPU core count we have on our database available
ti_proc = TextIndexBucketProcessor(graph=g, buckets_count_per_collection=6)
# We add a query which contains the nodes with the words we want to search for
ti_proc.set_iterate_node_collection(
name="gene", query="MATCH (n:Gene) WHERE NOT n:_OmitMatch return n"
)
# Next we add a query which contains the nodes and property name we want to scan.
# You also replace `fulltext_index_properties` with `text_index_property` to use a CONTAINS query instead of fulltext index
ti_proc.set_text_node_collection(
name="abstract",
query="MATCH (n:AbstractText) return n",
fulltext_index_properties=["text"],
)
# Now we define the action we want to apply on positive search results, set the property we search for and start our full text index search
# Mind the names of the nodes: its the name we defined in `add_iterate_node_collection` and `add_fulltext_node_collection`
ti_proc.run_text_index(
iterate_property="sid", cypher_action="MERGE (abstract)-[r:MENTIONS]->(gene)"
)
# At the end we clean up our bucket labels
ti_proc.clean_up()
```
We now have connected genes that appear in abstracts and did that process with the use of multiple CPU cores and avoided any nodelocking.
This was 4-times faster (because of `buckets_count_per_collection=4`) as just loop throug all genes and send them one by one to `db.index.fulltext.queryNodes`
> :warning: This is a prove of concept with a very narrow scope. You can not modify the `db.index.fulltext.queryNodes`-call which makes this tool rather unflexibel atm. Expect improvements in future versions :)
%prep
%autosetup -n DZDutils-1.7.4
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-DZDutils -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.7.4-1
- Package Spec generated
|