summaryrefslogtreecommitdiff
path: root/python-efficientnet.spec
blob: 6bb937575e84266e957e3a1d44177ad5f9d89cd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
%global _empty_manifest_terminate_build 0
Name:		python-efficientnet
Version:	1.1.1
Release:	1
Summary:	EfficientNet model re-implementation. Keras and TensorFlow Keras.
License:	Apache License 2.0
URL:		https://github.com/qubvel/efficientnet
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/bc/0f/811c73e9e579361b202b1e8205fff114ee7f9a738489247207c9141266f3/efficientnet-1.1.1.tar.gz
BuildArch:	noarch

Requires:	python3-keras-applications
Requires:	python3-scikit-image
Requires:	python3-pytest

%description

# EfficientNet Keras (and TensorFlow Keras)

[![PyPI version](https://badge.fury.io/py/efficientnet.svg)](https://badge.fury.io/py/efficientnet) [![Downloads](https://pepy.tech/badge/efficientnet/month)](https://pepy.tech/project/efficientnet/month)

This repository contains a Keras (and TensorFlow Keras) reimplementation of **EfficientNet**, a lightweight convolutional neural network architecture achieving the [state-of-the-art accuracy with an order of magnitude fewer parameters and FLOPS](https://arxiv.org/abs/1905.11946), on both ImageNet and
five other commonly used transfer learning datasets.

The codebase is heavily inspired by the [TensorFlow implementation](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet).

## Important!
There was a huge library update **24 of July 2019**. Now efficintnet works with both frameworks: `keras` and `tensorflow.keras`.
If you have models, trained before that date, to load them, please, use efficientnet of 0.0.4 version (PyPI). You can roll back using `pip install -U efficientnet==0.0.4`.

## Table of Contents

 1. [About EfficientNet Models](#about-efficientnet-models)
 2. [Examples](#examples)
 3. [Models](#models)
 4. [Installation](#installation)
 5. [Frequently Asked Questions](#frequently-asked-questions)
 6. [Acknowledgements](#acknowledgements)

## About EfficientNet Models

EfficientNets rely on AutoML and compound scaling to achieve superior performance without compromising resource efficiency. The [AutoML Mobile framework](https://ai.googleblog.com/2018/08/mnasnet-towards-automating-design-of.html) has helped develop a mobile-size baseline network, **EfficientNet-B0**, which is then improved by the compound scaling method  to obtain EfficientNet-B1 to B7.

<table border="0">
<tr>
    <td>
    <img src="https://raw.githubusercontent.com/tensorflow/tpu/master/models/official/efficientnet/g3doc/params.png" width="100%" />
    </td>
    <td>
    <img src="https://raw.githubusercontent.com/tensorflow/tpu/master/models/official/efficientnet/g3doc/flops.png", width="90%" />
    </td>
</tr>
</table>

EfficientNets achieve state-of-the-art accuracy on ImageNet with an order of magnitude better efficiency:

* In high-accuracy regime, EfficientNet-B7 achieves the state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet with 66M parameters and 37B FLOPS. At the same time, the model is 8.4x smaller and 6.1x faster on CPU inference than the former leader, [Gpipe](https://arxiv.org/abs/1811.06965).

* In middle-accuracy regime, EfficientNet-B1 is 7.6x smaller and 5.7x faster on CPU inference than [ResNet-152](https://arxiv.org/abs/1512.03385), with similar ImageNet accuracy.

* Compared to the widely used [ResNet-50](https://arxiv.org/abs/1512.03385), EfficientNet-B4 improves the top-1 accuracy from 76.3% of ResNet-50 to 82.6% (+6.3%), under similar FLOPS constraints.

## Examples

* *Initializing the model*:

```python
# models can be build with Keras or Tensorflow frameworks
# use keras and tfkeras modules respectively
# efficientnet.keras / efficientnet.tfkeras
import efficientnet.keras as efn 

model = efn.EfficientNetB0(weights='imagenet')  # or weights='noisy-student'

```

* *Loading the pre-trained weights*:

```python
# model use some custom objects, so before loading saved model
# import module your network was build with
# e.g. import efficientnet.keras / import efficientnet.tfkeras
import efficientnet.tfkeras
from tensorflow.keras.models import load_model

model = load_model('path/to/model.h5')
```

See the complete example of loading the model and making an inference in the Jupyter notebook [here](https://github.com/qubvel/efficientnet/blob/master/examples/inference_example.ipynb).

## Models

The performance of each model variant using the pre-trained weights converted from checkpoints provided by the authors is as follows:

| Architecture   | @top1* Imagenet| @top1* Noisy-Student| 
| -------------- | :----: |:---:|
| EfficientNetB0 | 0.772  |0.788|
| EfficientNetB1 | 0.791  |0.815|
| EfficientNetB2 | 0.802  |0.824|
| EfficientNetB3 | 0.816  |0.841|
| EfficientNetB4 | 0.830  |0.853|
| EfficientNetB5 | 0.837  |0.861|
| EfficientNetB6 | 0.841  |0.864|
| EfficientNetB7 | 0.844  |0.869|

**\*** - topK accuracy score for converted models (imagenet `val` set)

## Installation

### Requirements

* `Keras >= 2.2.0` / `TensorFlow >= 1.12.0`
* `keras_applications >= 1.0.7`
* `scikit-image`

### Installing from the source

```bash
$ pip install -U git+https://github.com/qubvel/efficientnet
```

### Installing from PyPI

PyPI stable release

```bash
$ pip install -U efficientnet
```

PyPI latest release (with keras and tf.keras support)

```bash
$ pip install -U --pre efficientnet
```

## Frequently Asked Questions

* **How can I convert the original TensorFlow checkpoints to Keras HDF5?**

Pick the target directory (like `dist`) and run the [converter script](./scripts) from the repo directory as follows:

```bash
$ ./scripts/convert_efficientnet.sh --target_dir dist
```

You can also optionally create the virtual environment with all the dependencies installed by adding `--make_venv=true` and operate in a self-destructing temporary location instead of the target directory by setting `--tmp_working_dir=true`.

## Acknowledgements
I would like to thanks community members who actively contribute to this repository:

1) Sasha Illarionov ([@sdll](https://github.com/sdll)) for preparing automated script for weights conversion
2) Björn Barz ([@Callidior](https://github.com/Callidior)) for model code adaptation for keras and tensorflow.keras frameworks 




%package -n python3-efficientnet
Summary:	EfficientNet model re-implementation. Keras and TensorFlow Keras.
Provides:	python-efficientnet
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-efficientnet

# EfficientNet Keras (and TensorFlow Keras)

[![PyPI version](https://badge.fury.io/py/efficientnet.svg)](https://badge.fury.io/py/efficientnet) [![Downloads](https://pepy.tech/badge/efficientnet/month)](https://pepy.tech/project/efficientnet/month)

This repository contains a Keras (and TensorFlow Keras) reimplementation of **EfficientNet**, a lightweight convolutional neural network architecture achieving the [state-of-the-art accuracy with an order of magnitude fewer parameters and FLOPS](https://arxiv.org/abs/1905.11946), on both ImageNet and
five other commonly used transfer learning datasets.

The codebase is heavily inspired by the [TensorFlow implementation](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet).

## Important!
There was a huge library update **24 of July 2019**. Now efficintnet works with both frameworks: `keras` and `tensorflow.keras`.
If you have models, trained before that date, to load them, please, use efficientnet of 0.0.4 version (PyPI). You can roll back using `pip install -U efficientnet==0.0.4`.

## Table of Contents

 1. [About EfficientNet Models](#about-efficientnet-models)
 2. [Examples](#examples)
 3. [Models](#models)
 4. [Installation](#installation)
 5. [Frequently Asked Questions](#frequently-asked-questions)
 6. [Acknowledgements](#acknowledgements)

## About EfficientNet Models

EfficientNets rely on AutoML and compound scaling to achieve superior performance without compromising resource efficiency. The [AutoML Mobile framework](https://ai.googleblog.com/2018/08/mnasnet-towards-automating-design-of.html) has helped develop a mobile-size baseline network, **EfficientNet-B0**, which is then improved by the compound scaling method  to obtain EfficientNet-B1 to B7.

<table border="0">
<tr>
    <td>
    <img src="https://raw.githubusercontent.com/tensorflow/tpu/master/models/official/efficientnet/g3doc/params.png" width="100%" />
    </td>
    <td>
    <img src="https://raw.githubusercontent.com/tensorflow/tpu/master/models/official/efficientnet/g3doc/flops.png", width="90%" />
    </td>
</tr>
</table>

EfficientNets achieve state-of-the-art accuracy on ImageNet with an order of magnitude better efficiency:

* In high-accuracy regime, EfficientNet-B7 achieves the state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet with 66M parameters and 37B FLOPS. At the same time, the model is 8.4x smaller and 6.1x faster on CPU inference than the former leader, [Gpipe](https://arxiv.org/abs/1811.06965).

* In middle-accuracy regime, EfficientNet-B1 is 7.6x smaller and 5.7x faster on CPU inference than [ResNet-152](https://arxiv.org/abs/1512.03385), with similar ImageNet accuracy.

* Compared to the widely used [ResNet-50](https://arxiv.org/abs/1512.03385), EfficientNet-B4 improves the top-1 accuracy from 76.3% of ResNet-50 to 82.6% (+6.3%), under similar FLOPS constraints.

## Examples

* *Initializing the model*:

```python
# models can be build with Keras or Tensorflow frameworks
# use keras and tfkeras modules respectively
# efficientnet.keras / efficientnet.tfkeras
import efficientnet.keras as efn 

model = efn.EfficientNetB0(weights='imagenet')  # or weights='noisy-student'

```

* *Loading the pre-trained weights*:

```python
# model use some custom objects, so before loading saved model
# import module your network was build with
# e.g. import efficientnet.keras / import efficientnet.tfkeras
import efficientnet.tfkeras
from tensorflow.keras.models import load_model

model = load_model('path/to/model.h5')
```

See the complete example of loading the model and making an inference in the Jupyter notebook [here](https://github.com/qubvel/efficientnet/blob/master/examples/inference_example.ipynb).

## Models

The performance of each model variant using the pre-trained weights converted from checkpoints provided by the authors is as follows:

| Architecture   | @top1* Imagenet| @top1* Noisy-Student| 
| -------------- | :----: |:---:|
| EfficientNetB0 | 0.772  |0.788|
| EfficientNetB1 | 0.791  |0.815|
| EfficientNetB2 | 0.802  |0.824|
| EfficientNetB3 | 0.816  |0.841|
| EfficientNetB4 | 0.830  |0.853|
| EfficientNetB5 | 0.837  |0.861|
| EfficientNetB6 | 0.841  |0.864|
| EfficientNetB7 | 0.844  |0.869|

**\*** - topK accuracy score for converted models (imagenet `val` set)

## Installation

### Requirements

* `Keras >= 2.2.0` / `TensorFlow >= 1.12.0`
* `keras_applications >= 1.0.7`
* `scikit-image`

### Installing from the source

```bash
$ pip install -U git+https://github.com/qubvel/efficientnet
```

### Installing from PyPI

PyPI stable release

```bash
$ pip install -U efficientnet
```

PyPI latest release (with keras and tf.keras support)

```bash
$ pip install -U --pre efficientnet
```

## Frequently Asked Questions

* **How can I convert the original TensorFlow checkpoints to Keras HDF5?**

Pick the target directory (like `dist`) and run the [converter script](./scripts) from the repo directory as follows:

```bash
$ ./scripts/convert_efficientnet.sh --target_dir dist
```

You can also optionally create the virtual environment with all the dependencies installed by adding `--make_venv=true` and operate in a self-destructing temporary location instead of the target directory by setting `--tmp_working_dir=true`.

## Acknowledgements
I would like to thanks community members who actively contribute to this repository:

1) Sasha Illarionov ([@sdll](https://github.com/sdll)) for preparing automated script for weights conversion
2) Björn Barz ([@Callidior](https://github.com/Callidior)) for model code adaptation for keras and tensorflow.keras frameworks 




%package help
Summary:	Development documents and examples for efficientnet
Provides:	python3-efficientnet-doc
%description help

# EfficientNet Keras (and TensorFlow Keras)

[![PyPI version](https://badge.fury.io/py/efficientnet.svg)](https://badge.fury.io/py/efficientnet) [![Downloads](https://pepy.tech/badge/efficientnet/month)](https://pepy.tech/project/efficientnet/month)

This repository contains a Keras (and TensorFlow Keras) reimplementation of **EfficientNet**, a lightweight convolutional neural network architecture achieving the [state-of-the-art accuracy with an order of magnitude fewer parameters and FLOPS](https://arxiv.org/abs/1905.11946), on both ImageNet and
five other commonly used transfer learning datasets.

The codebase is heavily inspired by the [TensorFlow implementation](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet).

## Important!
There was a huge library update **24 of July 2019**. Now efficintnet works with both frameworks: `keras` and `tensorflow.keras`.
If you have models, trained before that date, to load them, please, use efficientnet of 0.0.4 version (PyPI). You can roll back using `pip install -U efficientnet==0.0.4`.

## Table of Contents

 1. [About EfficientNet Models](#about-efficientnet-models)
 2. [Examples](#examples)
 3. [Models](#models)
 4. [Installation](#installation)
 5. [Frequently Asked Questions](#frequently-asked-questions)
 6. [Acknowledgements](#acknowledgements)

## About EfficientNet Models

EfficientNets rely on AutoML and compound scaling to achieve superior performance without compromising resource efficiency. The [AutoML Mobile framework](https://ai.googleblog.com/2018/08/mnasnet-towards-automating-design-of.html) has helped develop a mobile-size baseline network, **EfficientNet-B0**, which is then improved by the compound scaling method  to obtain EfficientNet-B1 to B7.

<table border="0">
<tr>
    <td>
    <img src="https://raw.githubusercontent.com/tensorflow/tpu/master/models/official/efficientnet/g3doc/params.png" width="100%" />
    </td>
    <td>
    <img src="https://raw.githubusercontent.com/tensorflow/tpu/master/models/official/efficientnet/g3doc/flops.png", width="90%" />
    </td>
</tr>
</table>

EfficientNets achieve state-of-the-art accuracy on ImageNet with an order of magnitude better efficiency:

* In high-accuracy regime, EfficientNet-B7 achieves the state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet with 66M parameters and 37B FLOPS. At the same time, the model is 8.4x smaller and 6.1x faster on CPU inference than the former leader, [Gpipe](https://arxiv.org/abs/1811.06965).

* In middle-accuracy regime, EfficientNet-B1 is 7.6x smaller and 5.7x faster on CPU inference than [ResNet-152](https://arxiv.org/abs/1512.03385), with similar ImageNet accuracy.

* Compared to the widely used [ResNet-50](https://arxiv.org/abs/1512.03385), EfficientNet-B4 improves the top-1 accuracy from 76.3% of ResNet-50 to 82.6% (+6.3%), under similar FLOPS constraints.

## Examples

* *Initializing the model*:

```python
# models can be build with Keras or Tensorflow frameworks
# use keras and tfkeras modules respectively
# efficientnet.keras / efficientnet.tfkeras
import efficientnet.keras as efn 

model = efn.EfficientNetB0(weights='imagenet')  # or weights='noisy-student'

```

* *Loading the pre-trained weights*:

```python
# model use some custom objects, so before loading saved model
# import module your network was build with
# e.g. import efficientnet.keras / import efficientnet.tfkeras
import efficientnet.tfkeras
from tensorflow.keras.models import load_model

model = load_model('path/to/model.h5')
```

See the complete example of loading the model and making an inference in the Jupyter notebook [here](https://github.com/qubvel/efficientnet/blob/master/examples/inference_example.ipynb).

## Models

The performance of each model variant using the pre-trained weights converted from checkpoints provided by the authors is as follows:

| Architecture   | @top1* Imagenet| @top1* Noisy-Student| 
| -------------- | :----: |:---:|
| EfficientNetB0 | 0.772  |0.788|
| EfficientNetB1 | 0.791  |0.815|
| EfficientNetB2 | 0.802  |0.824|
| EfficientNetB3 | 0.816  |0.841|
| EfficientNetB4 | 0.830  |0.853|
| EfficientNetB5 | 0.837  |0.861|
| EfficientNetB6 | 0.841  |0.864|
| EfficientNetB7 | 0.844  |0.869|

**\*** - topK accuracy score for converted models (imagenet `val` set)

## Installation

### Requirements

* `Keras >= 2.2.0` / `TensorFlow >= 1.12.0`
* `keras_applications >= 1.0.7`
* `scikit-image`

### Installing from the source

```bash
$ pip install -U git+https://github.com/qubvel/efficientnet
```

### Installing from PyPI

PyPI stable release

```bash
$ pip install -U efficientnet
```

PyPI latest release (with keras and tf.keras support)

```bash
$ pip install -U --pre efficientnet
```

## Frequently Asked Questions

* **How can I convert the original TensorFlow checkpoints to Keras HDF5?**

Pick the target directory (like `dist`) and run the [converter script](./scripts) from the repo directory as follows:

```bash
$ ./scripts/convert_efficientnet.sh --target_dir dist
```

You can also optionally create the virtual environment with all the dependencies installed by adding `--make_venv=true` and operate in a self-destructing temporary location instead of the target directory by setting `--tmp_working_dir=true`.

## Acknowledgements
I would like to thanks community members who actively contribute to this repository:

1) Sasha Illarionov ([@sdll](https://github.com/sdll)) for preparing automated script for weights conversion
2) Björn Barz ([@Callidior](https://github.com/Callidior)) for model code adaptation for keras and tensorflow.keras frameworks 




%prep
%autosetup -n efficientnet-1.1.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-efficientnet -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.1-1
- Package Spec generated