1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
%global _empty_manifest_terminate_build 0
Name: python-elasticdeform
Version: 0.5.0
Release: 1
Summary: Elastic deformations for N-D images.
License: BSD
URL: https://github.com/gvtulder/elasticdeform
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b6/ee/562d0bc43151411ffcfbac1cb1419748df9fbffb2a2685c9735f3e7e6352/elasticdeform-0.5.0.tar.gz
Requires: python3-numpy
Requires: python3-scipy
%description
[](https://elasticdeform.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/gvtulder/elasticdeform/actions/workflows/test.yml)
[](https://github.com/gvtulder/elasticdeform/actions/workflows/wheels.yml)
[](https://zenodo.org/badge/latestdoi/145003699)
This library implements elastic grid-based deformations for N-dimensional images.
The elastic deformation approach is described in
* Ronneberger, Fischer, and Brox, "U-Net: Convolutional Networks for Biomedical
Image Segmentation" (<https://arxiv.org/abs/1505.04597>)
* Çiçek et al., "3D U-Net: Learning Dense Volumetric
Segmentation from Sparse Annotation" (<https://arxiv.org/abs/1606.06650>)
The procedure generates a coarse displacement grid with a random displacement
for each grid point. This grid is then interpolated to compute a displacement for
each pixel in the input image. The input image is then deformed using the
displacement vectors and a spline interpolation.
In addition to the normal, forward deformation, this package also provides a
function that can backpropagate the gradient through the deformation. This makes
it possible to use the deformation as a layer in a convolutional neural network.
For convenience, TensorFlow and PyTorch wrappers are provided in `elasticdeform.tf`
and `elasticdeform.torch`.
%package -n python3-elasticdeform
Summary: Elastic deformations for N-D images.
Provides: python-elasticdeform
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-elasticdeform
[](https://elasticdeform.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/gvtulder/elasticdeform/actions/workflows/test.yml)
[](https://github.com/gvtulder/elasticdeform/actions/workflows/wheels.yml)
[](https://zenodo.org/badge/latestdoi/145003699)
This library implements elastic grid-based deformations for N-dimensional images.
The elastic deformation approach is described in
* Ronneberger, Fischer, and Brox, "U-Net: Convolutional Networks for Biomedical
Image Segmentation" (<https://arxiv.org/abs/1505.04597>)
* Çiçek et al., "3D U-Net: Learning Dense Volumetric
Segmentation from Sparse Annotation" (<https://arxiv.org/abs/1606.06650>)
The procedure generates a coarse displacement grid with a random displacement
for each grid point. This grid is then interpolated to compute a displacement for
each pixel in the input image. The input image is then deformed using the
displacement vectors and a spline interpolation.
In addition to the normal, forward deformation, this package also provides a
function that can backpropagate the gradient through the deformation. This makes
it possible to use the deformation as a layer in a convolutional neural network.
For convenience, TensorFlow and PyTorch wrappers are provided in `elasticdeform.tf`
and `elasticdeform.torch`.
%package help
Summary: Development documents and examples for elasticdeform
Provides: python3-elasticdeform-doc
%description help
[](https://elasticdeform.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/gvtulder/elasticdeform/actions/workflows/test.yml)
[](https://github.com/gvtulder/elasticdeform/actions/workflows/wheels.yml)
[](https://zenodo.org/badge/latestdoi/145003699)
This library implements elastic grid-based deformations for N-dimensional images.
The elastic deformation approach is described in
* Ronneberger, Fischer, and Brox, "U-Net: Convolutional Networks for Biomedical
Image Segmentation" (<https://arxiv.org/abs/1505.04597>)
* Çiçek et al., "3D U-Net: Learning Dense Volumetric
Segmentation from Sparse Annotation" (<https://arxiv.org/abs/1606.06650>)
The procedure generates a coarse displacement grid with a random displacement
for each grid point. This grid is then interpolated to compute a displacement for
each pixel in the input image. The input image is then deformed using the
displacement vectors and a spline interpolation.
In addition to the normal, forward deformation, this package also provides a
function that can backpropagate the gradient through the deformation. This makes
it possible to use the deformation as a layer in a convolutional neural network.
For convenience, TensorFlow and PyTorch wrappers are provided in `elasticdeform.tf`
and `elasticdeform.torch`.
%prep
%autosetup -n elasticdeform-0.5.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-elasticdeform -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.0-1
- Package Spec generated
|