summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-elegy.spec1102
-rw-r--r--sources1
3 files changed, 1104 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..b5f944d 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/elegy-0.8.6.tar.gz
diff --git a/python-elegy.spec b/python-elegy.spec
new file mode 100644
index 0000000..733987d
--- /dev/null
+++ b/python-elegy.spec
@@ -0,0 +1,1102 @@
+%global _empty_manifest_terminate_build 0
+Name: python-elegy
+Version: 0.8.6
+Release: 1
+Summary: Elegy is a Neural Networks framework based on Jax and Haiku.
+License: APACHE
+URL: https://poets-ai.github.io/elegy
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/31/26/2efee9bb7bcb8b0d2f4d5d77a630f0cd5da71ee5e89d721c29855297c896/elegy-0.8.6.tar.gz
+BuildArch: noarch
+
+Requires: python3-cloudpickle
+Requires: python3-tensorboardx
+Requires: python3-wandb
+Requires: python3-treex
+
+%description
+# Elegy
+
+<!-- [![PyPI Status Badge](https://badge.fury.io/py/eg.svg)](https://pypi.org/project/elegy/) -->
+<!-- [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/elegy)](https://pypi.org/project/elegy/) -->
+<!-- [![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://poets-ai.github.io/elegy/) -->
+<!-- [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) -->
+[![Coverage](https://img.shields.io/codecov/c/github/poets-ai/elegy?color=%2334D058)](https://codecov.io/gh/poets-ai/elegy)
+[![Status](https://github.com/poets-ai/elegy/workflows/GitHub%20CI/badge.svg)](https://github.com/poets-ai/elegy/actions?query=workflow%3A%22GitHub+CI%22)
+[![Contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/poets-ai/elegy/issues)
+
+______________________________________________________________________
+
+_A High Level API for Deep Learning in JAX_
+
+#### Main Features
+
+- 😀 **Easy-to-use**: Elegy provides a Keras-like high-level API that makes it very easy to use for most common tasks.
+- 💪‍ **Flexible**: Elegy provides a Pytorch Lightning-like low-level API that offers maximum flexibility when needed.
+- 🔌 **Compatible**: Elegy supports various frameworks and data sources including Flax & Haiku Modules, Optax Optimizers, TensorFlow Datasets, Pytorch DataLoaders, and more.
+<!-- - 🤷 **Agnostic**: Elegy supports various frameworks, including Flax, Haiku, and Optax on the high-level API, and it is 100% framework-agnostic on the low-level API. -->
+
+Elegy is built on top of [Treex](https://github.com/cgarciae/treex) and [Treeo](https://github.com/cgarciae/treeo) and reexports their APIs for convenience.
+
+
+[Getting Started](https://poets-ai.github.io/elegy/getting-started/high-level-api) | [Examples](/examples) | [Documentation](https://poets-ai.github.io/elegy)
+
+
+## What is included?
+* A `Model` class with an Estimator-like API.
+* A `callbacks` module with common Keras callbacks.
+
+**From Treex**
+
+* A `Module` class.
+* A `nn` module for with common layers.
+* A `losses` module with common loss functions.
+* A `metrics` module with common metrics.
+
+## Installation
+
+Install using pip:
+
+```bash
+pip install elegy
+```
+
+For Windows users, we recommend the Windows subsystem for Linux 2 [WSL2](https://docs.microsoft.com/es-es/windows/wsl/install-win10?redirectedfrom=MSDN) since [jax](https://github.com/google/jax/issues/438) does not support it yet.
+
+## Quick Start: High-level API
+
+Elegy's high-level API provides a straightforward interface you can use by implementing the following steps:
+
+**1.** Define the architecture inside a `Module`:
+
+```python
+import jax
+import elegy as eg
+
+class MLP(eg.Module):
+ @eg.compact
+ def __call__(self, x):
+ x = eg.Linear(300)(x)
+ x = jax.nn.relu(x)
+ x = eg.Linear(10)(x)
+ return x
+```
+
+**2.** Create a `Model` from this module and specify additional things like losses, metrics, and optimizers:
+
+```python
+import optax optax
+import elegy as eg
+
+model = eg.Model(
+ module=MLP(),
+ loss=[
+ eg.losses.Crossentropy(),
+ eg.regularizers.L2(l=1e-5),
+ ],
+ metrics=eg.metrics.Accuracy(),
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+**3.** Train the model using the `fit` method:
+
+```python
+model.fit(
+ inputs=X_train,
+ labels=y_train,
+ epochs=100,
+ steps_per_epoch=200,
+ batch_size=64,
+ validation_data=(X_test, y_test),
+ shuffle=True,
+ callbacks=[eg.callbacks.TensorBoard("summaries")]
+)
+```
+#### Using Flax
+
+<details>
+<summary>Show</summary>
+
+To use Flax with Elegy just create a `flax.linen.Module` and pass it to `Model`.
+
+```python
+import jax
+import elegy as eg
+import optax optax
+import flax.linen as nn
+
+class MLP(nn.Module):
+ @nn.compact
+ def __call__(self, x, training: bool):
+ x = nn.Dense(300)(x)
+ x = jax.nn.relu(x)
+ x = nn.Dense(10)(x)
+ return x
+
+
+model = eg.Model(
+ module=MLP(),
+ loss=[
+ eg.losses.Crossentropy(),
+ eg.regularizers.L2(l=1e-5),
+ ],
+ metrics=eg.metrics.Accuracy(),
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+As shown here, Flax Modules can optionally request a `training` argument to `__call__` which will be provided by Elegy / Treex.
+
+</details>
+
+#### Using Haiku
+
+<details>
+<summary>Show</summary>
+
+To use Haiku with Elegy do the following:
+
+* Create a `forward` function.
+* Create a `TransformedWithState` object by feeding `forward` to `hk.transform_with_state`.
+* Pass your `TransformedWithState` to `Model`.
+
+You can also optionally create your own `hk.Module` and use it in `forward` if needed. Putting everything together should look like this:
+
+```python
+import jax
+import elegy as eg
+import optax optax
+import haiku as hk
+
+
+def forward(x, training: bool):
+ x = hk.Linear(300)(x)
+ x = jax.nn.relu(x)
+ x = hk.Linear(10)(x)
+ return x
+
+
+model = eg.Model(
+ module=hk.transform_with_state(forward),
+ loss=[
+ eg.losses.Crossentropy(),
+ eg.regularizers.L2(l=1e-5),
+ ],
+ metrics=eg.metrics.Accuracy(),
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+As shown here, `forward` can optionally request a `training` argument which will be provided by Elegy / Treex.
+
+</details>
+
+## Quick Start: Low-level API
+
+Elegy's low-level API lets you explicitly define what goes on during training, testing, and inference. Let's define our own custom `Model` to implement a `LinearClassifier` with pure JAX:
+
+**1.** Define a custom `init_step` method:
+
+```python
+class LinearClassifier(eg.Model):
+ # use treex's API to declare parameter nodes
+ w: jnp.ndarray = eg.Parameter.node()
+ b: jnp.ndarray = eg.Parameter.node()
+
+ def init_step(self, key: jnp.ndarray, inputs: jnp.ndarray):
+ self.w = jax.random.uniform(
+ key=key,
+ shape=[features_in, 10],
+ )
+ self.b = jnp.zeros([10])
+
+ self.optimizer = self.optimizer.init(self)
+
+ return self
+```
+Here we declared the parameters `w` and `b` using Treex's `Parameter.node()` for pedagogical reasons, however normally you don't have to do this since you typically use a sub-`Module` instead.
+
+**2.** Define a custom `test_step` method:
+```python
+ def test_step(self, inputs, labels):
+ # flatten + scale
+ inputs = jnp.reshape(inputs, (inputs.shape[0], -1)) / 255
+
+ # forward
+ logits = jnp.dot(inputs, self.w) + self.b
+
+ # crossentropy loss
+ target = jax.nn.one_hot(labels["target"], 10)
+ loss = optax.softmax_cross_entropy(logits, target).mean()
+
+ # metrics
+ logs = dict(
+ acc=jnp.mean(jnp.argmax(logits, axis=-1) == labels["target"]),
+ loss=loss,
+ )
+
+ return loss, logs, self
+```
+
+**3.** Instantiate our `LinearClassifier` with an optimizer:
+
+```python
+model = LinearClassifier(
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+**4.** Train the model using the `fit` method:
+
+```python
+model.fit(
+ inputs=X_train,
+ labels=y_train,
+ epochs=100,
+ steps_per_epoch=200,
+ batch_size=64,
+ validation_data=(X_test, y_test),
+ shuffle=True,
+ callbacks=[eg.callbacks.TensorBoard("summaries")]
+)
+```
+
+#### Using other JAX Frameworks
+
+<details>
+<summary>Show</summary>
+
+It is straightforward to integrate other functional JAX libraries with this
+low-level API, here is an example with Flax:
+
+```python
+import elegy as eg
+import flax.linen as nn
+
+class LinearClassifier(eg.Model):
+ params: Mapping[str, Any] = eg.Parameter.node()
+ batch_stats: Mapping[str, Any] = eg.BatchStat.node()
+ next_key: eg.KeySeq
+
+ def __init__(self, module: nn.Module, **kwargs):
+ self.flax_module = module
+ super().__init__(**kwargs)
+
+ def init_step(self, key, inputs):
+ self.next_key = eg.KeySeq(key)
+
+ variables = self.flax_module.init(
+ {"params": self.next_key(), "dropout": self.next_key()}, x
+ )
+ self.params = variables["params"]
+ self.batch_stats = variables["batch_stats"]
+
+ self.optimizer = self.optimizer.init(self.parameters())
+
+ def test_step(self, inputs, labels):
+ # forward
+ variables = dict(
+ params=self.params,
+ batch_stats=self.batch_stats,
+ )
+ logits, variables = self.flax_module.apply(
+ variables,
+ inputs,
+ rngs={"dropout": self.next_key()},
+ mutable=True,
+ )
+ self.batch_stats = variables["batch_stats"]
+
+ # loss
+ target = jax.nn.one_hot(labels["target"], 10)
+ loss = optax.softmax_cross_entropy(logits, target).mean()
+
+ # logs
+ logs = dict(
+ accuracy=accuracy,
+ loss=loss,
+ )
+ return loss, logs, self
+```
+
+</details>
+
+### Examples
+
+Check out the [/example](/examples) directory for some inspiration. To run an example, first install some requirements:
+
+```bash
+pip install -r examples/requirements.txt
+```
+
+And the run it normally with python e.g.
+
+```bash
+python examples/flax/mnist_vae.py
+```
+
+## Contributing
+
+If your are interested in helping improve Elegy check out the [Contributing Guide](https://poets-ai.github.io/elegy/guides/contributing).
+
+## Sponsors 💚
+* [Quansight](https://www.quansight.com) - paid development time
+
+## Citing Elegy
+
+
+**BibTeX**
+
+```
+@software{elegy2020repository,
+ title = {Elegy: A High Level API for Deep Learning in JAX},
+ author = {PoetsAI},
+ year = 2021,
+ url = {https://github.com/poets-ai/elegy},
+ version = {0.8.1}
+}
+```
+
+
+%package -n python3-elegy
+Summary: Elegy is a Neural Networks framework based on Jax and Haiku.
+Provides: python-elegy
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-elegy
+# Elegy
+
+<!-- [![PyPI Status Badge](https://badge.fury.io/py/eg.svg)](https://pypi.org/project/elegy/) -->
+<!-- [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/elegy)](https://pypi.org/project/elegy/) -->
+<!-- [![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://poets-ai.github.io/elegy/) -->
+<!-- [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) -->
+[![Coverage](https://img.shields.io/codecov/c/github/poets-ai/elegy?color=%2334D058)](https://codecov.io/gh/poets-ai/elegy)
+[![Status](https://github.com/poets-ai/elegy/workflows/GitHub%20CI/badge.svg)](https://github.com/poets-ai/elegy/actions?query=workflow%3A%22GitHub+CI%22)
+[![Contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/poets-ai/elegy/issues)
+
+______________________________________________________________________
+
+_A High Level API for Deep Learning in JAX_
+
+#### Main Features
+
+- 😀 **Easy-to-use**: Elegy provides a Keras-like high-level API that makes it very easy to use for most common tasks.
+- 💪‍ **Flexible**: Elegy provides a Pytorch Lightning-like low-level API that offers maximum flexibility when needed.
+- 🔌 **Compatible**: Elegy supports various frameworks and data sources including Flax & Haiku Modules, Optax Optimizers, TensorFlow Datasets, Pytorch DataLoaders, and more.
+<!-- - 🤷 **Agnostic**: Elegy supports various frameworks, including Flax, Haiku, and Optax on the high-level API, and it is 100% framework-agnostic on the low-level API. -->
+
+Elegy is built on top of [Treex](https://github.com/cgarciae/treex) and [Treeo](https://github.com/cgarciae/treeo) and reexports their APIs for convenience.
+
+
+[Getting Started](https://poets-ai.github.io/elegy/getting-started/high-level-api) | [Examples](/examples) | [Documentation](https://poets-ai.github.io/elegy)
+
+
+## What is included?
+* A `Model` class with an Estimator-like API.
+* A `callbacks` module with common Keras callbacks.
+
+**From Treex**
+
+* A `Module` class.
+* A `nn` module for with common layers.
+* A `losses` module with common loss functions.
+* A `metrics` module with common metrics.
+
+## Installation
+
+Install using pip:
+
+```bash
+pip install elegy
+```
+
+For Windows users, we recommend the Windows subsystem for Linux 2 [WSL2](https://docs.microsoft.com/es-es/windows/wsl/install-win10?redirectedfrom=MSDN) since [jax](https://github.com/google/jax/issues/438) does not support it yet.
+
+## Quick Start: High-level API
+
+Elegy's high-level API provides a straightforward interface you can use by implementing the following steps:
+
+**1.** Define the architecture inside a `Module`:
+
+```python
+import jax
+import elegy as eg
+
+class MLP(eg.Module):
+ @eg.compact
+ def __call__(self, x):
+ x = eg.Linear(300)(x)
+ x = jax.nn.relu(x)
+ x = eg.Linear(10)(x)
+ return x
+```
+
+**2.** Create a `Model` from this module and specify additional things like losses, metrics, and optimizers:
+
+```python
+import optax optax
+import elegy as eg
+
+model = eg.Model(
+ module=MLP(),
+ loss=[
+ eg.losses.Crossentropy(),
+ eg.regularizers.L2(l=1e-5),
+ ],
+ metrics=eg.metrics.Accuracy(),
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+**3.** Train the model using the `fit` method:
+
+```python
+model.fit(
+ inputs=X_train,
+ labels=y_train,
+ epochs=100,
+ steps_per_epoch=200,
+ batch_size=64,
+ validation_data=(X_test, y_test),
+ shuffle=True,
+ callbacks=[eg.callbacks.TensorBoard("summaries")]
+)
+```
+#### Using Flax
+
+<details>
+<summary>Show</summary>
+
+To use Flax with Elegy just create a `flax.linen.Module` and pass it to `Model`.
+
+```python
+import jax
+import elegy as eg
+import optax optax
+import flax.linen as nn
+
+class MLP(nn.Module):
+ @nn.compact
+ def __call__(self, x, training: bool):
+ x = nn.Dense(300)(x)
+ x = jax.nn.relu(x)
+ x = nn.Dense(10)(x)
+ return x
+
+
+model = eg.Model(
+ module=MLP(),
+ loss=[
+ eg.losses.Crossentropy(),
+ eg.regularizers.L2(l=1e-5),
+ ],
+ metrics=eg.metrics.Accuracy(),
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+As shown here, Flax Modules can optionally request a `training` argument to `__call__` which will be provided by Elegy / Treex.
+
+</details>
+
+#### Using Haiku
+
+<details>
+<summary>Show</summary>
+
+To use Haiku with Elegy do the following:
+
+* Create a `forward` function.
+* Create a `TransformedWithState` object by feeding `forward` to `hk.transform_with_state`.
+* Pass your `TransformedWithState` to `Model`.
+
+You can also optionally create your own `hk.Module` and use it in `forward` if needed. Putting everything together should look like this:
+
+```python
+import jax
+import elegy as eg
+import optax optax
+import haiku as hk
+
+
+def forward(x, training: bool):
+ x = hk.Linear(300)(x)
+ x = jax.nn.relu(x)
+ x = hk.Linear(10)(x)
+ return x
+
+
+model = eg.Model(
+ module=hk.transform_with_state(forward),
+ loss=[
+ eg.losses.Crossentropy(),
+ eg.regularizers.L2(l=1e-5),
+ ],
+ metrics=eg.metrics.Accuracy(),
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+As shown here, `forward` can optionally request a `training` argument which will be provided by Elegy / Treex.
+
+</details>
+
+## Quick Start: Low-level API
+
+Elegy's low-level API lets you explicitly define what goes on during training, testing, and inference. Let's define our own custom `Model` to implement a `LinearClassifier` with pure JAX:
+
+**1.** Define a custom `init_step` method:
+
+```python
+class LinearClassifier(eg.Model):
+ # use treex's API to declare parameter nodes
+ w: jnp.ndarray = eg.Parameter.node()
+ b: jnp.ndarray = eg.Parameter.node()
+
+ def init_step(self, key: jnp.ndarray, inputs: jnp.ndarray):
+ self.w = jax.random.uniform(
+ key=key,
+ shape=[features_in, 10],
+ )
+ self.b = jnp.zeros([10])
+
+ self.optimizer = self.optimizer.init(self)
+
+ return self
+```
+Here we declared the parameters `w` and `b` using Treex's `Parameter.node()` for pedagogical reasons, however normally you don't have to do this since you typically use a sub-`Module` instead.
+
+**2.** Define a custom `test_step` method:
+```python
+ def test_step(self, inputs, labels):
+ # flatten + scale
+ inputs = jnp.reshape(inputs, (inputs.shape[0], -1)) / 255
+
+ # forward
+ logits = jnp.dot(inputs, self.w) + self.b
+
+ # crossentropy loss
+ target = jax.nn.one_hot(labels["target"], 10)
+ loss = optax.softmax_cross_entropy(logits, target).mean()
+
+ # metrics
+ logs = dict(
+ acc=jnp.mean(jnp.argmax(logits, axis=-1) == labels["target"]),
+ loss=loss,
+ )
+
+ return loss, logs, self
+```
+
+**3.** Instantiate our `LinearClassifier` with an optimizer:
+
+```python
+model = LinearClassifier(
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+**4.** Train the model using the `fit` method:
+
+```python
+model.fit(
+ inputs=X_train,
+ labels=y_train,
+ epochs=100,
+ steps_per_epoch=200,
+ batch_size=64,
+ validation_data=(X_test, y_test),
+ shuffle=True,
+ callbacks=[eg.callbacks.TensorBoard("summaries")]
+)
+```
+
+#### Using other JAX Frameworks
+
+<details>
+<summary>Show</summary>
+
+It is straightforward to integrate other functional JAX libraries with this
+low-level API, here is an example with Flax:
+
+```python
+import elegy as eg
+import flax.linen as nn
+
+class LinearClassifier(eg.Model):
+ params: Mapping[str, Any] = eg.Parameter.node()
+ batch_stats: Mapping[str, Any] = eg.BatchStat.node()
+ next_key: eg.KeySeq
+
+ def __init__(self, module: nn.Module, **kwargs):
+ self.flax_module = module
+ super().__init__(**kwargs)
+
+ def init_step(self, key, inputs):
+ self.next_key = eg.KeySeq(key)
+
+ variables = self.flax_module.init(
+ {"params": self.next_key(), "dropout": self.next_key()}, x
+ )
+ self.params = variables["params"]
+ self.batch_stats = variables["batch_stats"]
+
+ self.optimizer = self.optimizer.init(self.parameters())
+
+ def test_step(self, inputs, labels):
+ # forward
+ variables = dict(
+ params=self.params,
+ batch_stats=self.batch_stats,
+ )
+ logits, variables = self.flax_module.apply(
+ variables,
+ inputs,
+ rngs={"dropout": self.next_key()},
+ mutable=True,
+ )
+ self.batch_stats = variables["batch_stats"]
+
+ # loss
+ target = jax.nn.one_hot(labels["target"], 10)
+ loss = optax.softmax_cross_entropy(logits, target).mean()
+
+ # logs
+ logs = dict(
+ accuracy=accuracy,
+ loss=loss,
+ )
+ return loss, logs, self
+```
+
+</details>
+
+### Examples
+
+Check out the [/example](/examples) directory for some inspiration. To run an example, first install some requirements:
+
+```bash
+pip install -r examples/requirements.txt
+```
+
+And the run it normally with python e.g.
+
+```bash
+python examples/flax/mnist_vae.py
+```
+
+## Contributing
+
+If your are interested in helping improve Elegy check out the [Contributing Guide](https://poets-ai.github.io/elegy/guides/contributing).
+
+## Sponsors 💚
+* [Quansight](https://www.quansight.com) - paid development time
+
+## Citing Elegy
+
+
+**BibTeX**
+
+```
+@software{elegy2020repository,
+ title = {Elegy: A High Level API for Deep Learning in JAX},
+ author = {PoetsAI},
+ year = 2021,
+ url = {https://github.com/poets-ai/elegy},
+ version = {0.8.1}
+}
+```
+
+
+%package help
+Summary: Development documents and examples for elegy
+Provides: python3-elegy-doc
+%description help
+# Elegy
+
+<!-- [![PyPI Status Badge](https://badge.fury.io/py/eg.svg)](https://pypi.org/project/elegy/) -->
+<!-- [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/elegy)](https://pypi.org/project/elegy/) -->
+<!-- [![Documentation](https://img.shields.io/badge/api-reference-blue.svg)](https://poets-ai.github.io/elegy/) -->
+<!-- [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) -->
+[![Coverage](https://img.shields.io/codecov/c/github/poets-ai/elegy?color=%2334D058)](https://codecov.io/gh/poets-ai/elegy)
+[![Status](https://github.com/poets-ai/elegy/workflows/GitHub%20CI/badge.svg)](https://github.com/poets-ai/elegy/actions?query=workflow%3A%22GitHub+CI%22)
+[![Contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/poets-ai/elegy/issues)
+
+______________________________________________________________________
+
+_A High Level API for Deep Learning in JAX_
+
+#### Main Features
+
+- 😀 **Easy-to-use**: Elegy provides a Keras-like high-level API that makes it very easy to use for most common tasks.
+- 💪‍ **Flexible**: Elegy provides a Pytorch Lightning-like low-level API that offers maximum flexibility when needed.
+- 🔌 **Compatible**: Elegy supports various frameworks and data sources including Flax & Haiku Modules, Optax Optimizers, TensorFlow Datasets, Pytorch DataLoaders, and more.
+<!-- - 🤷 **Agnostic**: Elegy supports various frameworks, including Flax, Haiku, and Optax on the high-level API, and it is 100% framework-agnostic on the low-level API. -->
+
+Elegy is built on top of [Treex](https://github.com/cgarciae/treex) and [Treeo](https://github.com/cgarciae/treeo) and reexports their APIs for convenience.
+
+
+[Getting Started](https://poets-ai.github.io/elegy/getting-started/high-level-api) | [Examples](/examples) | [Documentation](https://poets-ai.github.io/elegy)
+
+
+## What is included?
+* A `Model` class with an Estimator-like API.
+* A `callbacks` module with common Keras callbacks.
+
+**From Treex**
+
+* A `Module` class.
+* A `nn` module for with common layers.
+* A `losses` module with common loss functions.
+* A `metrics` module with common metrics.
+
+## Installation
+
+Install using pip:
+
+```bash
+pip install elegy
+```
+
+For Windows users, we recommend the Windows subsystem for Linux 2 [WSL2](https://docs.microsoft.com/es-es/windows/wsl/install-win10?redirectedfrom=MSDN) since [jax](https://github.com/google/jax/issues/438) does not support it yet.
+
+## Quick Start: High-level API
+
+Elegy's high-level API provides a straightforward interface you can use by implementing the following steps:
+
+**1.** Define the architecture inside a `Module`:
+
+```python
+import jax
+import elegy as eg
+
+class MLP(eg.Module):
+ @eg.compact
+ def __call__(self, x):
+ x = eg.Linear(300)(x)
+ x = jax.nn.relu(x)
+ x = eg.Linear(10)(x)
+ return x
+```
+
+**2.** Create a `Model` from this module and specify additional things like losses, metrics, and optimizers:
+
+```python
+import optax optax
+import elegy as eg
+
+model = eg.Model(
+ module=MLP(),
+ loss=[
+ eg.losses.Crossentropy(),
+ eg.regularizers.L2(l=1e-5),
+ ],
+ metrics=eg.metrics.Accuracy(),
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+**3.** Train the model using the `fit` method:
+
+```python
+model.fit(
+ inputs=X_train,
+ labels=y_train,
+ epochs=100,
+ steps_per_epoch=200,
+ batch_size=64,
+ validation_data=(X_test, y_test),
+ shuffle=True,
+ callbacks=[eg.callbacks.TensorBoard("summaries")]
+)
+```
+#### Using Flax
+
+<details>
+<summary>Show</summary>
+
+To use Flax with Elegy just create a `flax.linen.Module` and pass it to `Model`.
+
+```python
+import jax
+import elegy as eg
+import optax optax
+import flax.linen as nn
+
+class MLP(nn.Module):
+ @nn.compact
+ def __call__(self, x, training: bool):
+ x = nn.Dense(300)(x)
+ x = jax.nn.relu(x)
+ x = nn.Dense(10)(x)
+ return x
+
+
+model = eg.Model(
+ module=MLP(),
+ loss=[
+ eg.losses.Crossentropy(),
+ eg.regularizers.L2(l=1e-5),
+ ],
+ metrics=eg.metrics.Accuracy(),
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+As shown here, Flax Modules can optionally request a `training` argument to `__call__` which will be provided by Elegy / Treex.
+
+</details>
+
+#### Using Haiku
+
+<details>
+<summary>Show</summary>
+
+To use Haiku with Elegy do the following:
+
+* Create a `forward` function.
+* Create a `TransformedWithState` object by feeding `forward` to `hk.transform_with_state`.
+* Pass your `TransformedWithState` to `Model`.
+
+You can also optionally create your own `hk.Module` and use it in `forward` if needed. Putting everything together should look like this:
+
+```python
+import jax
+import elegy as eg
+import optax optax
+import haiku as hk
+
+
+def forward(x, training: bool):
+ x = hk.Linear(300)(x)
+ x = jax.nn.relu(x)
+ x = hk.Linear(10)(x)
+ return x
+
+
+model = eg.Model(
+ module=hk.transform_with_state(forward),
+ loss=[
+ eg.losses.Crossentropy(),
+ eg.regularizers.L2(l=1e-5),
+ ],
+ metrics=eg.metrics.Accuracy(),
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+As shown here, `forward` can optionally request a `training` argument which will be provided by Elegy / Treex.
+
+</details>
+
+## Quick Start: Low-level API
+
+Elegy's low-level API lets you explicitly define what goes on during training, testing, and inference. Let's define our own custom `Model` to implement a `LinearClassifier` with pure JAX:
+
+**1.** Define a custom `init_step` method:
+
+```python
+class LinearClassifier(eg.Model):
+ # use treex's API to declare parameter nodes
+ w: jnp.ndarray = eg.Parameter.node()
+ b: jnp.ndarray = eg.Parameter.node()
+
+ def init_step(self, key: jnp.ndarray, inputs: jnp.ndarray):
+ self.w = jax.random.uniform(
+ key=key,
+ shape=[features_in, 10],
+ )
+ self.b = jnp.zeros([10])
+
+ self.optimizer = self.optimizer.init(self)
+
+ return self
+```
+Here we declared the parameters `w` and `b` using Treex's `Parameter.node()` for pedagogical reasons, however normally you don't have to do this since you typically use a sub-`Module` instead.
+
+**2.** Define a custom `test_step` method:
+```python
+ def test_step(self, inputs, labels):
+ # flatten + scale
+ inputs = jnp.reshape(inputs, (inputs.shape[0], -1)) / 255
+
+ # forward
+ logits = jnp.dot(inputs, self.w) + self.b
+
+ # crossentropy loss
+ target = jax.nn.one_hot(labels["target"], 10)
+ loss = optax.softmax_cross_entropy(logits, target).mean()
+
+ # metrics
+ logs = dict(
+ acc=jnp.mean(jnp.argmax(logits, axis=-1) == labels["target"]),
+ loss=loss,
+ )
+
+ return loss, logs, self
+```
+
+**3.** Instantiate our `LinearClassifier` with an optimizer:
+
+```python
+model = LinearClassifier(
+ optimizer=optax.rmsprop(1e-3),
+)
+```
+
+**4.** Train the model using the `fit` method:
+
+```python
+model.fit(
+ inputs=X_train,
+ labels=y_train,
+ epochs=100,
+ steps_per_epoch=200,
+ batch_size=64,
+ validation_data=(X_test, y_test),
+ shuffle=True,
+ callbacks=[eg.callbacks.TensorBoard("summaries")]
+)
+```
+
+#### Using other JAX Frameworks
+
+<details>
+<summary>Show</summary>
+
+It is straightforward to integrate other functional JAX libraries with this
+low-level API, here is an example with Flax:
+
+```python
+import elegy as eg
+import flax.linen as nn
+
+class LinearClassifier(eg.Model):
+ params: Mapping[str, Any] = eg.Parameter.node()
+ batch_stats: Mapping[str, Any] = eg.BatchStat.node()
+ next_key: eg.KeySeq
+
+ def __init__(self, module: nn.Module, **kwargs):
+ self.flax_module = module
+ super().__init__(**kwargs)
+
+ def init_step(self, key, inputs):
+ self.next_key = eg.KeySeq(key)
+
+ variables = self.flax_module.init(
+ {"params": self.next_key(), "dropout": self.next_key()}, x
+ )
+ self.params = variables["params"]
+ self.batch_stats = variables["batch_stats"]
+
+ self.optimizer = self.optimizer.init(self.parameters())
+
+ def test_step(self, inputs, labels):
+ # forward
+ variables = dict(
+ params=self.params,
+ batch_stats=self.batch_stats,
+ )
+ logits, variables = self.flax_module.apply(
+ variables,
+ inputs,
+ rngs={"dropout": self.next_key()},
+ mutable=True,
+ )
+ self.batch_stats = variables["batch_stats"]
+
+ # loss
+ target = jax.nn.one_hot(labels["target"], 10)
+ loss = optax.softmax_cross_entropy(logits, target).mean()
+
+ # logs
+ logs = dict(
+ accuracy=accuracy,
+ loss=loss,
+ )
+ return loss, logs, self
+```
+
+</details>
+
+### Examples
+
+Check out the [/example](/examples) directory for some inspiration. To run an example, first install some requirements:
+
+```bash
+pip install -r examples/requirements.txt
+```
+
+And the run it normally with python e.g.
+
+```bash
+python examples/flax/mnist_vae.py
+```
+
+## Contributing
+
+If your are interested in helping improve Elegy check out the [Contributing Guide](https://poets-ai.github.io/elegy/guides/contributing).
+
+## Sponsors 💚
+* [Quansight](https://www.quansight.com) - paid development time
+
+## Citing Elegy
+
+
+**BibTeX**
+
+```
+@software{elegy2020repository,
+ title = {Elegy: A High Level API for Deep Learning in JAX},
+ author = {PoetsAI},
+ year = 2021,
+ url = {https://github.com/poets-ai/elegy},
+ version = {0.8.1}
+}
+```
+
+
+%prep
+%autosetup -n elegy-0.8.6
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-elegy -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 0.8.6-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..e52eb44
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+5d9c75b6b6ef1689624f6138f35e7945 elegy-0.8.6.tar.gz