summaryrefslogtreecommitdiff
path: root/python-essmc2.spec
blob: 7b2459410af333f2997d20308f05e4dcea201a14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
%global _empty_manifest_terminate_build 0
Name:		python-essmc2
Version:	0.1.4
Release:	1
Summary:	EssentialMC2: A Video Understanding Algorithm Framework.
License:	MIT License
URL:		https://github.com/alibaba/EssentialMC2
Source0:	https://mirrors.aliyun.com/pypi/web/packages/32/b3/8d5502285344050e53d35cc42e33aa334429636652e4e556f204d9f816e8/essmc2-0.1.4.tar.gz
BuildArch:	noarch

Requires:	python3-addict
Requires:	python3-yapf
Requires:	python3-numpy
Requires:	python3-opencv-transforms
Requires:	python3-packaging
Requires:	python3-oss2
Requires:	python3-opencv-python
Requires:	python3-einops
Requires:	python3-docstring-parser

%description
# EssentialMC2

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/essmc2)](https://pypi.org/project/essmc2/) [![PyPI](https://img.shields.io/pypi/v/essmc2)](https://pypi.org/project/essmc2) [![license](https://img.shields.io/github/license/alibaba/EssentialMC2.svg)](https://github.com/alibaba/EssentialMC2/blob/main/LICENSE)

### Introduction

EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2(
relation reasoning) and MOSL3(openset life-long learning) powered by [DAMO Academy](https://damo.alibaba.com/?lang=en)
MinD(Machine IntelligenNce of Damo) Lab. This codebase provides a comprehensive solution for video classification, 
temporal detection and noise learning.

### Features

- Simple and easy to use
- High efficiency
- Include SOTA papers presented by DAMO Academy
- Include various pretrained models

### Installation

#### Install by pip

Run `pip install essmc2`.

#### Install from source

##### Requirements

* Python 3.6+
* PytTorch 1.5+

Run `python setup.py install`. For each specific task, please refer to task specific README.

### Model Zoo

Pretrained models can be found in the [MODEL_ZOO.md](MODEL_ZOO.md).

### SOTA Tasks

- TAda! Temporally-Adaptive Convolutions for Video Understanding <br>
[[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/tada/README.md)] [[Paper](https://arxiv.org/pdf/2110.06178.pdf)] [[Website](https://tadaconv-iclr2022.github.io)] **ICLR 2022**
- NGC: A Unified Framework for Learning with Open-World Noisy Data <br>
[[Project](papers/ICCV2021-NGC/README.md)] [[Paper](https://arxiv.org/abs/2108.11035)] **ICCV 2021**
- Self-supervised Motion Learning from Static Images <br>
[[Project](papers/CVPR2021-MOSI/README.md)] [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Huang_Self-Supervised_Motion_Learning_From_Static_Images_CVPR_2021_paper)] **CVPR 2021**
- A Stronger Baseline for Ego-Centric Action Detection <br>
[[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/epic-kitchen-tal/README.md)] [[Paper](https://arxiv.org/pdf/2106.06942)] 
**First-place** submission to [EPIC-KITCHENS-100 Action Detection Challenge](https://competitions.codalab.org/competitions/25926#results)
- Towards Training Stronger Video Vision Transformers for EPIC-KITCHENS-100 Action Recognition <br>
[[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/epic-kitchen-ar/README.md)] [[Paper](https://arxiv.org/pdf/2106.05058)] 
**Second-place** submission to [EPIC-KITCHENS-100 Action Recognition challenge](https://competitions.codalab.org/competitions/25923#results)

### License

EssentialMC2 is released under [MIT license](https://github.com/alibaba/EssentialMC2/blob/main/LICENSE).

```text
MIT License

Copyright (c) 2021 Alibaba

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
```

### Acknowledgement

EssentialMC2 is an open source project that is contributed by researchers from DAMO Academy. We appreciate users who
give valuable feedbacks.




%package -n python3-essmc2
Summary:	EssentialMC2: A Video Understanding Algorithm Framework.
Provides:	python-essmc2
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-essmc2
# EssentialMC2

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/essmc2)](https://pypi.org/project/essmc2/) [![PyPI](https://img.shields.io/pypi/v/essmc2)](https://pypi.org/project/essmc2) [![license](https://img.shields.io/github/license/alibaba/EssentialMC2.svg)](https://github.com/alibaba/EssentialMC2/blob/main/LICENSE)

### Introduction

EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2(
relation reasoning) and MOSL3(openset life-long learning) powered by [DAMO Academy](https://damo.alibaba.com/?lang=en)
MinD(Machine IntelligenNce of Damo) Lab. This codebase provides a comprehensive solution for video classification, 
temporal detection and noise learning.

### Features

- Simple and easy to use
- High efficiency
- Include SOTA papers presented by DAMO Academy
- Include various pretrained models

### Installation

#### Install by pip

Run `pip install essmc2`.

#### Install from source

##### Requirements

* Python 3.6+
* PytTorch 1.5+

Run `python setup.py install`. For each specific task, please refer to task specific README.

### Model Zoo

Pretrained models can be found in the [MODEL_ZOO.md](MODEL_ZOO.md).

### SOTA Tasks

- TAda! Temporally-Adaptive Convolutions for Video Understanding <br>
[[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/tada/README.md)] [[Paper](https://arxiv.org/pdf/2110.06178.pdf)] [[Website](https://tadaconv-iclr2022.github.io)] **ICLR 2022**
- NGC: A Unified Framework for Learning with Open-World Noisy Data <br>
[[Project](papers/ICCV2021-NGC/README.md)] [[Paper](https://arxiv.org/abs/2108.11035)] **ICCV 2021**
- Self-supervised Motion Learning from Static Images <br>
[[Project](papers/CVPR2021-MOSI/README.md)] [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Huang_Self-Supervised_Motion_Learning_From_Static_Images_CVPR_2021_paper)] **CVPR 2021**
- A Stronger Baseline for Ego-Centric Action Detection <br>
[[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/epic-kitchen-tal/README.md)] [[Paper](https://arxiv.org/pdf/2106.06942)] 
**First-place** submission to [EPIC-KITCHENS-100 Action Detection Challenge](https://competitions.codalab.org/competitions/25926#results)
- Towards Training Stronger Video Vision Transformers for EPIC-KITCHENS-100 Action Recognition <br>
[[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/epic-kitchen-ar/README.md)] [[Paper](https://arxiv.org/pdf/2106.05058)] 
**Second-place** submission to [EPIC-KITCHENS-100 Action Recognition challenge](https://competitions.codalab.org/competitions/25923#results)

### License

EssentialMC2 is released under [MIT license](https://github.com/alibaba/EssentialMC2/blob/main/LICENSE).

```text
MIT License

Copyright (c) 2021 Alibaba

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
```

### Acknowledgement

EssentialMC2 is an open source project that is contributed by researchers from DAMO Academy. We appreciate users who
give valuable feedbacks.




%package help
Summary:	Development documents and examples for essmc2
Provides:	python3-essmc2-doc
%description help
# EssentialMC2

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/essmc2)](https://pypi.org/project/essmc2/) [![PyPI](https://img.shields.io/pypi/v/essmc2)](https://pypi.org/project/essmc2) [![license](https://img.shields.io/github/license/alibaba/EssentialMC2.svg)](https://github.com/alibaba/EssentialMC2/blob/main/LICENSE)

### Introduction

EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2(
relation reasoning) and MOSL3(openset life-long learning) powered by [DAMO Academy](https://damo.alibaba.com/?lang=en)
MinD(Machine IntelligenNce of Damo) Lab. This codebase provides a comprehensive solution for video classification, 
temporal detection and noise learning.

### Features

- Simple and easy to use
- High efficiency
- Include SOTA papers presented by DAMO Academy
- Include various pretrained models

### Installation

#### Install by pip

Run `pip install essmc2`.

#### Install from source

##### Requirements

* Python 3.6+
* PytTorch 1.5+

Run `python setup.py install`. For each specific task, please refer to task specific README.

### Model Zoo

Pretrained models can be found in the [MODEL_ZOO.md](MODEL_ZOO.md).

### SOTA Tasks

- TAda! Temporally-Adaptive Convolutions for Video Understanding <br>
[[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/tada/README.md)] [[Paper](https://arxiv.org/pdf/2110.06178.pdf)] [[Website](https://tadaconv-iclr2022.github.io)] **ICLR 2022**
- NGC: A Unified Framework for Learning with Open-World Noisy Data <br>
[[Project](papers/ICCV2021-NGC/README.md)] [[Paper](https://arxiv.org/abs/2108.11035)] **ICCV 2021**
- Self-supervised Motion Learning from Static Images <br>
[[Project](papers/CVPR2021-MOSI/README.md)] [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Huang_Self-Supervised_Motion_Learning_From_Static_Images_CVPR_2021_paper)] **CVPR 2021**
- A Stronger Baseline for Ego-Centric Action Detection <br>
[[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/epic-kitchen-tal/README.md)] [[Paper](https://arxiv.org/pdf/2106.06942)] 
**First-place** submission to [EPIC-KITCHENS-100 Action Detection Challenge](https://competitions.codalab.org/competitions/25926#results)
- Towards Training Stronger Video Vision Transformers for EPIC-KITCHENS-100 Action Recognition <br>
[[Project](https://github.com/alibaba-mmai-research/TAdaConv/blob/main/projects/epic-kitchen-ar/README.md)] [[Paper](https://arxiv.org/pdf/2106.05058)] 
**Second-place** submission to [EPIC-KITCHENS-100 Action Recognition challenge](https://competitions.codalab.org/competitions/25923#results)

### License

EssentialMC2 is released under [MIT license](https://github.com/alibaba/EssentialMC2/blob/main/LICENSE).

```text
MIT License

Copyright (c) 2021 Alibaba

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
```

### Acknowledgement

EssentialMC2 is an open source project that is contributed by researchers from DAMO Academy. We appreciate users who
give valuable feedbacks.




%prep
%autosetup -n essmc2-0.1.4

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-essmc2 -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.4-1
- Package Spec generated