1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
%global _empty_manifest_terminate_build 0
Name: python-executing
Version: 1.2.0
Release: 1
Summary: Get the currently executing AST node of a frame, and other information
License: MIT
URL: https://github.com/alexmojaki/executing
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/8f/ac/89ff37d8594b0eef176b7cec742ac868fef853b8e18df0309e3def9f480b/executing-1.2.0.tar.gz
BuildArch: noarch
Requires: python3-typing
Requires: python3-asttokens
Requires: python3-pytest
Requires: python3-littleutils
Requires: python3-rich
%description
# executing
[](https://github.com/alexmojaki/executing/actions) [](https://coveralls.io/github/alexmojaki/executing?branch=master) [](https://pypi.python.org/pypi/executing)
This mini-package lets you get information about what a frame is currently doing, particularly the AST node being executed.
* [Usage](#usage)
* [Getting the AST node](#getting-the-ast-node)
* [Getting the source code of the node](#getting-the-source-code-of-the-node)
* [Getting the `__qualname__` of the current function](#getting-the-__qualname__-of-the-current-function)
* [The Source class](#the-source-class)
* [Installation](#installation)
* [How does it work?](#how-does-it-work)
* [Is it reliable?](#is-it-reliable)
* [Which nodes can it identify?](#which-nodes-can-it-identify)
* [Libraries that use this](#libraries-that-use-this)
## Usage
### Getting the AST node
```python
import executing
node = executing.Source.executing(frame).node
```
Then `node` will be an AST node (from the `ast` standard library module) or None if the node couldn't be identified (which may happen often and should always be checked).
`node` will always be the same instance for multiple calls with frames at the same point of execution.
If you have a traceback object, pass it directly to `Source.executing()` rather than the `tb_frame` attribute to get the correct node.
### Getting the source code of the node
For this you will need to separately install the [`asttokens`](https://github.com/gristlabs/asttokens) library, then obtain an `ASTTokens` object:
```python
executing.Source.executing(frame).source.asttokens()
```
or:
```python
executing.Source.for_frame(frame).asttokens()
```
or use one of the convenience methods:
```python
executing.Source.executing(frame).text()
executing.Source.executing(frame).text_range()
```
### Getting the `__qualname__` of the current function
```python
executing.Source.executing(frame).code_qualname()
```
or:
```python
executing.Source.for_frame(frame).code_qualname(frame.f_code)
```
### The `Source` class
Everything goes through the `Source` class. Only one instance of the class is created for each filename. Subclassing it to add more attributes on creation or methods is recommended. The classmethods such as `executing` will respect this. See the source code and docstrings for more detail.
## Installation
pip install executing
If you don't like that you can just copy the file `executing.py`, there are no dependencies (but of course you won't get updates).
## How does it work?
Suppose the frame is executing this line:
```python
self.foo(bar.x)
```
and in particular it's currently obtaining the attribute `self.foo`. Looking at the bytecode, specifically `frame.f_code.co_code[frame.f_lasti]`, we can tell that it's loading an attribute, but it's not obvious which one. We can narrow down the statement being executed using `frame.f_lineno` and find the two `ast.Attribute` nodes representing `self.foo` and `bar.x`. How do we find out which one it is, without recreating the entire compiler in Python?
The trick is to modify the AST slightly for each candidate expression and observe the changes in the bytecode instructions. We change the AST to this:
```python
(self.foo ** 'longuniqueconstant')(bar.x)
```
and compile it, and the bytecode will be almost the same but there will be two new instructions:
LOAD_CONST 'longuniqueconstant'
BINARY_POWER
and just before that will be a `LOAD_ATTR` instruction corresponding to `self.foo`. Seeing that it's in the same position as the original instruction lets us know we've found our match.
## Is it reliable?
Yes - if it identifies a node, you can trust that it's identified the correct one. The tests are very thorough - in addition to unit tests which check various situations directly, there are property tests against a large number of files (see the filenames printed in [this build](https://travis-ci.org/alexmojaki/executing/jobs/557970457)) with real code. Specifically, for each file, the tests:
1. Identify as many nodes as possible from all the bytecode instructions in the file, and assert that they are all distinct
2. Find all the nodes that should be identifiable, and assert that they were indeed identified somewhere
In other words, it shows that there is a one-to-one mapping between the nodes and the instructions that can be handled. This leaves very little room for a bug to creep in.
Furthermore, `executing` checks that the instructions compiled from the modified AST exactly match the original code save for a few small known exceptions. This accounts for all the quirks and optimisations in the interpreter.
## Which nodes can it identify?
Currently it works in almost all cases for the following `ast` nodes:
- `Call`, e.g. `self.foo(bar)`
- `Attribute`, e.g. `point.x`
- `Subscript`, e.g. `lst[1]`
- `BinOp`, e.g. `x + y` (doesn't include `and` and `or`)
- `UnaryOp`, e.g. `-n` (includes `not` but only works sometimes)
- `Compare` e.g. `a < b` (not for chains such as `0 < p < 1`)
The plan is to extend to more operations in the future.
## Projects that use this
### My Projects
- **[`stack_data`](https://github.com/alexmojaki/stack_data)**: Extracts data from stack frames and tracebacks, particularly to display more useful tracebacks than the default. Also uses another related library of mine: **[`pure_eval`](https://github.com/alexmojaki/pure_eval)**.
- **[`futurecoder`](https://futurecoder.io/)**: Highlights the executing node in tracebacks using `executing` via `stack_data`, and provides debugging with `snoop`.
- **[`snoop`](https://github.com/alexmojaki/snoop)**: A feature-rich and convenient debugging library. Uses `executing` to show the operation which caused an exception and to allow the `pp` function to display the source of its arguments.
- **[`heartrate`](https://github.com/alexmojaki/heartrate)**: A simple real time visualisation of the execution of a Python program. Uses `executing` to highlight currently executing operations, particularly in each frame of the stack trace.
- **[`sorcery`](https://github.com/alexmojaki/sorcery)**: Dark magic delights in Python. Uses `executing` to let special callables called spells know where they're being called from.
### Projects I've contributed to
- **[`IPython`](https://github.com/ipython/ipython/pull/12150)**: Highlights the executing node in tracebacks using `executing` via [`stack_data`](https://github.com/alexmojaki/stack_data).
- **[`icecream`](https://github.com/gruns/icecream)**: 🍦 Sweet and creamy print debugging. Uses `executing` to identify where `ic` is called and print its arguments.
- **[`friendly_traceback`](https://github.com/friendly-traceback/friendly-traceback)**: Uses `stack_data` and `executing` to pinpoint the cause of errors and provide helpful explanations.
- **[`python-devtools`](https://github.com/samuelcolvin/python-devtools)**: Uses `executing` for print debugging similar to `icecream`.
- **[`sentry_sdk`](https://github.com/getsentry/sentry-python)**: Add the integration `sentry_sdk.integrations.executingExecutingIntegration()` to show the function `__qualname__` in each frame in sentry events.
- **[`varname`](https://github.com/pwwang/python-varname)**: Dark magics about variable names in python. Uses `executing` to find where its various magical functions like `varname` and `nameof` are called from.
%package -n python3-executing
Summary: Get the currently executing AST node of a frame, and other information
Provides: python-executing
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-executing
# executing
[](https://github.com/alexmojaki/executing/actions) [](https://coveralls.io/github/alexmojaki/executing?branch=master) [](https://pypi.python.org/pypi/executing)
This mini-package lets you get information about what a frame is currently doing, particularly the AST node being executed.
* [Usage](#usage)
* [Getting the AST node](#getting-the-ast-node)
* [Getting the source code of the node](#getting-the-source-code-of-the-node)
* [Getting the `__qualname__` of the current function](#getting-the-__qualname__-of-the-current-function)
* [The Source class](#the-source-class)
* [Installation](#installation)
* [How does it work?](#how-does-it-work)
* [Is it reliable?](#is-it-reliable)
* [Which nodes can it identify?](#which-nodes-can-it-identify)
* [Libraries that use this](#libraries-that-use-this)
## Usage
### Getting the AST node
```python
import executing
node = executing.Source.executing(frame).node
```
Then `node` will be an AST node (from the `ast` standard library module) or None if the node couldn't be identified (which may happen often and should always be checked).
`node` will always be the same instance for multiple calls with frames at the same point of execution.
If you have a traceback object, pass it directly to `Source.executing()` rather than the `tb_frame` attribute to get the correct node.
### Getting the source code of the node
For this you will need to separately install the [`asttokens`](https://github.com/gristlabs/asttokens) library, then obtain an `ASTTokens` object:
```python
executing.Source.executing(frame).source.asttokens()
```
or:
```python
executing.Source.for_frame(frame).asttokens()
```
or use one of the convenience methods:
```python
executing.Source.executing(frame).text()
executing.Source.executing(frame).text_range()
```
### Getting the `__qualname__` of the current function
```python
executing.Source.executing(frame).code_qualname()
```
or:
```python
executing.Source.for_frame(frame).code_qualname(frame.f_code)
```
### The `Source` class
Everything goes through the `Source` class. Only one instance of the class is created for each filename. Subclassing it to add more attributes on creation or methods is recommended. The classmethods such as `executing` will respect this. See the source code and docstrings for more detail.
## Installation
pip install executing
If you don't like that you can just copy the file `executing.py`, there are no dependencies (but of course you won't get updates).
## How does it work?
Suppose the frame is executing this line:
```python
self.foo(bar.x)
```
and in particular it's currently obtaining the attribute `self.foo`. Looking at the bytecode, specifically `frame.f_code.co_code[frame.f_lasti]`, we can tell that it's loading an attribute, but it's not obvious which one. We can narrow down the statement being executed using `frame.f_lineno` and find the two `ast.Attribute` nodes representing `self.foo` and `bar.x`. How do we find out which one it is, without recreating the entire compiler in Python?
The trick is to modify the AST slightly for each candidate expression and observe the changes in the bytecode instructions. We change the AST to this:
```python
(self.foo ** 'longuniqueconstant')(bar.x)
```
and compile it, and the bytecode will be almost the same but there will be two new instructions:
LOAD_CONST 'longuniqueconstant'
BINARY_POWER
and just before that will be a `LOAD_ATTR` instruction corresponding to `self.foo`. Seeing that it's in the same position as the original instruction lets us know we've found our match.
## Is it reliable?
Yes - if it identifies a node, you can trust that it's identified the correct one. The tests are very thorough - in addition to unit tests which check various situations directly, there are property tests against a large number of files (see the filenames printed in [this build](https://travis-ci.org/alexmojaki/executing/jobs/557970457)) with real code. Specifically, for each file, the tests:
1. Identify as many nodes as possible from all the bytecode instructions in the file, and assert that they are all distinct
2. Find all the nodes that should be identifiable, and assert that they were indeed identified somewhere
In other words, it shows that there is a one-to-one mapping between the nodes and the instructions that can be handled. This leaves very little room for a bug to creep in.
Furthermore, `executing` checks that the instructions compiled from the modified AST exactly match the original code save for a few small known exceptions. This accounts for all the quirks and optimisations in the interpreter.
## Which nodes can it identify?
Currently it works in almost all cases for the following `ast` nodes:
- `Call`, e.g. `self.foo(bar)`
- `Attribute`, e.g. `point.x`
- `Subscript`, e.g. `lst[1]`
- `BinOp`, e.g. `x + y` (doesn't include `and` and `or`)
- `UnaryOp`, e.g. `-n` (includes `not` but only works sometimes)
- `Compare` e.g. `a < b` (not for chains such as `0 < p < 1`)
The plan is to extend to more operations in the future.
## Projects that use this
### My Projects
- **[`stack_data`](https://github.com/alexmojaki/stack_data)**: Extracts data from stack frames and tracebacks, particularly to display more useful tracebacks than the default. Also uses another related library of mine: **[`pure_eval`](https://github.com/alexmojaki/pure_eval)**.
- **[`futurecoder`](https://futurecoder.io/)**: Highlights the executing node in tracebacks using `executing` via `stack_data`, and provides debugging with `snoop`.
- **[`snoop`](https://github.com/alexmojaki/snoop)**: A feature-rich and convenient debugging library. Uses `executing` to show the operation which caused an exception and to allow the `pp` function to display the source of its arguments.
- **[`heartrate`](https://github.com/alexmojaki/heartrate)**: A simple real time visualisation of the execution of a Python program. Uses `executing` to highlight currently executing operations, particularly in each frame of the stack trace.
- **[`sorcery`](https://github.com/alexmojaki/sorcery)**: Dark magic delights in Python. Uses `executing` to let special callables called spells know where they're being called from.
### Projects I've contributed to
- **[`IPython`](https://github.com/ipython/ipython/pull/12150)**: Highlights the executing node in tracebacks using `executing` via [`stack_data`](https://github.com/alexmojaki/stack_data).
- **[`icecream`](https://github.com/gruns/icecream)**: 🍦 Sweet and creamy print debugging. Uses `executing` to identify where `ic` is called and print its arguments.
- **[`friendly_traceback`](https://github.com/friendly-traceback/friendly-traceback)**: Uses `stack_data` and `executing` to pinpoint the cause of errors and provide helpful explanations.
- **[`python-devtools`](https://github.com/samuelcolvin/python-devtools)**: Uses `executing` for print debugging similar to `icecream`.
- **[`sentry_sdk`](https://github.com/getsentry/sentry-python)**: Add the integration `sentry_sdk.integrations.executingExecutingIntegration()` to show the function `__qualname__` in each frame in sentry events.
- **[`varname`](https://github.com/pwwang/python-varname)**: Dark magics about variable names in python. Uses `executing` to find where its various magical functions like `varname` and `nameof` are called from.
%package help
Summary: Development documents and examples for executing
Provides: python3-executing-doc
%description help
# executing
[](https://github.com/alexmojaki/executing/actions) [](https://coveralls.io/github/alexmojaki/executing?branch=master) [](https://pypi.python.org/pypi/executing)
This mini-package lets you get information about what a frame is currently doing, particularly the AST node being executed.
* [Usage](#usage)
* [Getting the AST node](#getting-the-ast-node)
* [Getting the source code of the node](#getting-the-source-code-of-the-node)
* [Getting the `__qualname__` of the current function](#getting-the-__qualname__-of-the-current-function)
* [The Source class](#the-source-class)
* [Installation](#installation)
* [How does it work?](#how-does-it-work)
* [Is it reliable?](#is-it-reliable)
* [Which nodes can it identify?](#which-nodes-can-it-identify)
* [Libraries that use this](#libraries-that-use-this)
## Usage
### Getting the AST node
```python
import executing
node = executing.Source.executing(frame).node
```
Then `node` will be an AST node (from the `ast` standard library module) or None if the node couldn't be identified (which may happen often and should always be checked).
`node` will always be the same instance for multiple calls with frames at the same point of execution.
If you have a traceback object, pass it directly to `Source.executing()` rather than the `tb_frame` attribute to get the correct node.
### Getting the source code of the node
For this you will need to separately install the [`asttokens`](https://github.com/gristlabs/asttokens) library, then obtain an `ASTTokens` object:
```python
executing.Source.executing(frame).source.asttokens()
```
or:
```python
executing.Source.for_frame(frame).asttokens()
```
or use one of the convenience methods:
```python
executing.Source.executing(frame).text()
executing.Source.executing(frame).text_range()
```
### Getting the `__qualname__` of the current function
```python
executing.Source.executing(frame).code_qualname()
```
or:
```python
executing.Source.for_frame(frame).code_qualname(frame.f_code)
```
### The `Source` class
Everything goes through the `Source` class. Only one instance of the class is created for each filename. Subclassing it to add more attributes on creation or methods is recommended. The classmethods such as `executing` will respect this. See the source code and docstrings for more detail.
## Installation
pip install executing
If you don't like that you can just copy the file `executing.py`, there are no dependencies (but of course you won't get updates).
## How does it work?
Suppose the frame is executing this line:
```python
self.foo(bar.x)
```
and in particular it's currently obtaining the attribute `self.foo`. Looking at the bytecode, specifically `frame.f_code.co_code[frame.f_lasti]`, we can tell that it's loading an attribute, but it's not obvious which one. We can narrow down the statement being executed using `frame.f_lineno` and find the two `ast.Attribute` nodes representing `self.foo` and `bar.x`. How do we find out which one it is, without recreating the entire compiler in Python?
The trick is to modify the AST slightly for each candidate expression and observe the changes in the bytecode instructions. We change the AST to this:
```python
(self.foo ** 'longuniqueconstant')(bar.x)
```
and compile it, and the bytecode will be almost the same but there will be two new instructions:
LOAD_CONST 'longuniqueconstant'
BINARY_POWER
and just before that will be a `LOAD_ATTR` instruction corresponding to `self.foo`. Seeing that it's in the same position as the original instruction lets us know we've found our match.
## Is it reliable?
Yes - if it identifies a node, you can trust that it's identified the correct one. The tests are very thorough - in addition to unit tests which check various situations directly, there are property tests against a large number of files (see the filenames printed in [this build](https://travis-ci.org/alexmojaki/executing/jobs/557970457)) with real code. Specifically, for each file, the tests:
1. Identify as many nodes as possible from all the bytecode instructions in the file, and assert that they are all distinct
2. Find all the nodes that should be identifiable, and assert that they were indeed identified somewhere
In other words, it shows that there is a one-to-one mapping between the nodes and the instructions that can be handled. This leaves very little room for a bug to creep in.
Furthermore, `executing` checks that the instructions compiled from the modified AST exactly match the original code save for a few small known exceptions. This accounts for all the quirks and optimisations in the interpreter.
## Which nodes can it identify?
Currently it works in almost all cases for the following `ast` nodes:
- `Call`, e.g. `self.foo(bar)`
- `Attribute`, e.g. `point.x`
- `Subscript`, e.g. `lst[1]`
- `BinOp`, e.g. `x + y` (doesn't include `and` and `or`)
- `UnaryOp`, e.g. `-n` (includes `not` but only works sometimes)
- `Compare` e.g. `a < b` (not for chains such as `0 < p < 1`)
The plan is to extend to more operations in the future.
## Projects that use this
### My Projects
- **[`stack_data`](https://github.com/alexmojaki/stack_data)**: Extracts data from stack frames and tracebacks, particularly to display more useful tracebacks than the default. Also uses another related library of mine: **[`pure_eval`](https://github.com/alexmojaki/pure_eval)**.
- **[`futurecoder`](https://futurecoder.io/)**: Highlights the executing node in tracebacks using `executing` via `stack_data`, and provides debugging with `snoop`.
- **[`snoop`](https://github.com/alexmojaki/snoop)**: A feature-rich and convenient debugging library. Uses `executing` to show the operation which caused an exception and to allow the `pp` function to display the source of its arguments.
- **[`heartrate`](https://github.com/alexmojaki/heartrate)**: A simple real time visualisation of the execution of a Python program. Uses `executing` to highlight currently executing operations, particularly in each frame of the stack trace.
- **[`sorcery`](https://github.com/alexmojaki/sorcery)**: Dark magic delights in Python. Uses `executing` to let special callables called spells know where they're being called from.
### Projects I've contributed to
- **[`IPython`](https://github.com/ipython/ipython/pull/12150)**: Highlights the executing node in tracebacks using `executing` via [`stack_data`](https://github.com/alexmojaki/stack_data).
- **[`icecream`](https://github.com/gruns/icecream)**: 🍦 Sweet and creamy print debugging. Uses `executing` to identify where `ic` is called and print its arguments.
- **[`friendly_traceback`](https://github.com/friendly-traceback/friendly-traceback)**: Uses `stack_data` and `executing` to pinpoint the cause of errors and provide helpful explanations.
- **[`python-devtools`](https://github.com/samuelcolvin/python-devtools)**: Uses `executing` for print debugging similar to `icecream`.
- **[`sentry_sdk`](https://github.com/getsentry/sentry-python)**: Add the integration `sentry_sdk.integrations.executingExecutingIntegration()` to show the function `__qualname__` in each frame in sentry events.
- **[`varname`](https://github.com/pwwang/python-varname)**: Dark magics about variable names in python. Uses `executing` to find where its various magical functions like `varname` and `nameof` are called from.
%prep
%autosetup -n executing-1.2.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-executing -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.0-1
- Package Spec generated
|