summaryrefslogtreecommitdiff
path: root/python-expression.spec
blob: faea33558eb5ffb8afb4b0e876e77820cbfba24e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
%global _empty_manifest_terminate_build 0
Name:		python-expression
Version:	4.2.4
Release:	1
Summary:	Practical functional programming for Python 3.9+
License:	MIT
URL:		https://github.com/cognitedata/Expression
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/6d/65/c20876c9d96db9a7c52c72c2bd00137a7556600ceeccf3ddeaedb54249e9/expression-4.2.4.tar.gz
BuildArch:	noarch

Requires:	python3-typing-extensions

%description
# Expression

[![PyPI](https://img.shields.io/pypi/v/expression.svg)](https://pypi.python.org/pypi/Expression)
![Python package](https://github.com/cognitedata/expression/workflows/Python%20package/badge.svg)
![Upload Python Package](https://github.com/cognitedata/expression/workflows/Upload%20Python%20Package/badge.svg)
[![Documentation Status](https://readthedocs.org/projects/expression/badge/?version=latest)](https://expression.readthedocs.io/en/latest/?badge=latest)
[![codecov](https://codecov.io/gh/cognitedata/expression/branch/main/graph/badge.svg)](https://codecov.io/gh/cognitedata/expression)

> Pragmatic functional programming

Expression aims to be a solid, type-safe, pragmatic, and high performance
library for frictionless and practical functional programming in Python 3.9+.

By pragmatic, we mean that the goal of the library is to use simple abstractions
to enable you to do practical and productive functional programming in Python
(instead of being a [Monad tutorial](https://github.com/dbrattli/OSlash)).

Python is a multi-paradigm programming language that also supports functional
programming constructs such as functions, higher-order functions, lambdas, and
in many ways favors composition over inheritance.

> Better Python with F#

Expression tries to make a better Python by providing several functional
features inspired by [F#](https://fsharp.org). This serves several
purposes:

- Enable functional programming in a Pythonic way, i.e., make sure we are not
  over-abstracting things. Expression will not require purely functional
  programming as would a language like Haskell.
- Everything you learn with Expression can also be used with F#. Learn F# by
  starting in a programming language they already know. Perhaps get inspired to
  also [try out F#](https://aka.ms/fsharphome) by itself.
- Make it easier for F# developers to use Python when needed, and re-use many
  of the concepts and abstractions they already know and love.

Expression will enable you to work with Python using many of the same
programming concepts and abstractions. This enables concepts such as [Railway
oriented programming](https://fsharpforfunandprofit.com/rop/) (ROP) for better
and predictable error handling. Pipelining for workflows, computational
expressions, etc.

> _Expressions evaluate to a value. Statements do something._

F# is a functional programming language for .NET that is succinct (concise,
readable, and type-safe) and kind of
[Pythonic](https://docs.python.org/3/glossary.html). F# is in many ways very
similar to Python, but F# can also do a lot of things better than Python:

- Strongly typed, if it compiles it usually works making refactoring much
  safer. You can trust the type-system. With [mypy](http://mypy-lang.org/) or
  [Pylance](https://github.com/microsoft/pylance-release) you often wonder who
  is right and who is wrong.
- Type inference, the compiler deduces types during compilation
- Expression based language

## Getting Started

You can install the latest `expression` from PyPI by running `pip` (or
`pip3`). Note that `expression` only works for Python 3.9+.

```console
> pip3 install expression
```

## Goals

- Industrial strength library for functional programming in Python.
- The resulting code should look and feel like Python
  ([PEP-8](https://www.python.org/dev/peps/pep-0008/)). We want to make a
  better Python, not some obscure DSL or academic Monad tutorial.
- Provide pipelining and pipe friendly methods. Compose all the things!
- Dot-chaining on objects as an alternative syntax to pipes.
- Lower the cognitive load on the programmer by:
  - Avoid currying, not supported in Python by default and not a well known
    concept by Python programmers.
  - Avoid operator (`|`, `>>`, etc) overloading, this usually confuses more
    than it helps.
  - Avoid recursion. Recursion is not normally used in Python and any use of it
    should be hidden within the SDK.
- Provide [type-hints](https://docs.python.org/3/library/typing.html) for all
  functions and methods.
- Support PEP 634 and structural pattern matching.
- Code must pass strict static type checking by
  [pylance](https://devblogs.microsoft.com/python/announcing-pylance-fast-feature-rich-language-support-for-python-in-visual-studio-code/).
  Pylance is awesome, use it!
- [Pydantic](https://pydantic-docs.helpmanual.io/) friendly data types. Use Expression
  types as part of your Pydantic data model and (de)serialize to/from JSON.

## Supported features

Expression will never provide you with all the features of F# and .NET. We are
providing a few of the features we think are useful, and will add more
on-demand as we go along.

- **Pipelining** - for creating workflows.
- **Composition** - for composing and creating new operators.
- **Fluent or Functional** syntax, i.e., dot chain or pipeline operators.
- **Pattern Matching** - an alternative flow control to `if-elif-else`.
- **Error Handling** - Several error handling types.
  - **Option** - for optional stuff and better `None` handling.
  - **Result** - for better error handling and enables railway-oriented
    programming in Python.
  - **Try** - a simpler result type that pins the error to an Exception.
- **Collections** - immutable collections.
  - **TypedArray** - a generic array type that abstracts the details of
    `bytearray`, `array.array` and `list` modules.
  - **Sequence** - a better
    [itertools](https://docs.python.org/3/library/itertools.html) and
    fully compatible with Python iterables.
  - **Block** - a frozen and immutable list type.
  - **Map** - a frozen and immutable dictionary type.
  - **AsyncSeq** - Asynchronous iterables.
  - **AsyncObservable** - Asynchronous observables. Provided separately
    by [aioreactive](https://github.com/dbrattli/aioreactive).
- **Data Modelling** - sum and product types
  - **TaggedUnion** - A tagged (discriminated) union type.
- **Parser Combinators** - A recursive decent string parser combinator
  library.
- **Effects**: - lightweight computational expressions for Python. This
  is amazing stuff.
  - **option** - an optional world for working with optional values.
  - **result** - an error handling world for working with result values.
- **Mailbox Processor**: for lock free programming using the [Actor
  model](https://en.wikipedia.org/wiki/Actor_model).
- **Cancellation Token**: for cancellation of asynchronous (and
  synchronous) workflows.
- **Disposable**: For resource management.

### Pipelining

Expression provides a `pipe` function similar to `|>` in F#. We don't want to
overload any Python operators, e.g., `|` so `pipe` is a plain old function taking
N-arguments, and will let you pipe a value through any number of functions.

```python
from expression import pipe

v = 1
fn = lambda x: x + 1
gn = lambda x: x * 2

assert pipe(v, fn, gn) == gn(fn(v))
```

Expression objects (e.g., `Some`, `Seq`, `Result`) also have a `pipe` method, so you can dot chain pipelines
directly on the object:

```python
from expression import Some

v = Some(1)
fn = lambda x: x.map(lambda y: y + 1)
gn = lambda x: x.map(lambda y: y * 2)

assert v.pipe(fn, gn) == gn(fn(v))
```

So for example with sequences you may create sequence transforming
pipelines:

```python
from expression.collections import seq, Seq

xs = Seq.of(9, 10, 11)
ys = xs.pipe(
    seq.map(lambda x: x * 10),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0)
)

assert ys == 110
```

### Composition

Functions may even be composed directly into custom operators:

```python
from expression import compose
from expression.collections import seq, Seq

xs = Seq.of(9, 10, 11)
custom = compose(
    seq.map(lambda x: x * 10),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0)
)
ys = custom(xs)

assert ys == 110
```

### Fluent and Functional

Expression can be used both with a fluent or functional syntax (or both.)

#### Fluent syntax

The fluent syntax uses methods and is very compact. But it might get you into
trouble for large pipelines since it's not a natural way of adding line breaks.

```python
from expression.collections import Seq

xs = Seq.of(1, 2, 3)
ys = xs.map(lambda x: x * 100).filter(lambda x: x > 100).fold(lambda s, x: s + x, 0)
```

Note that fluent syntax is probably the better choice if you use mypy
for type checking since mypy may have problems inferring types through
larger pipelines.

#### Functional syntax

The functional syntax is a bit more verbose but you can easily add new
operations on new lines. The functional syntax is great to use together
with pylance/pyright.

```python
from expression import pipe
from expression.collections import seq, Seq

xs = Seq.of(1, 2, 3)
ys = pipe(xs,
    seq.map(lambda x: x * 100),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0),
)
```

Both fluent and functional syntax may be mixed and even pipe can be used
fluently.

```python
from expression.collections import seq, Seq
xs = Seq.of(1, 2, 3).pipe(seq.map(...))
```

### Option

The `Option` type is used when a function or method cannot produce a meaningful
output for a given input.

An option value may have a value of a given type, i.e., `Some(value)`, or it might
not have any meaningful value, i.e., `Nothing`.

```python
from expression import Some, Nothing, Option

def keep_positive(a: int) -> Option[int]:
    if a > 0:
        return Some(a)

    return Nothing
```

```python
from expression import Option, Ok
def exists(x : Option[int]) -> bool:
    match x:
        case Some(_):
            return True
    return False
```

### Option as an effect

Effects in Expression is implemented as specially decorated coroutines
([enhanced generators](https://www.python.org/dev/peps/pep-0342/)) using
`yield`, `yield from` and `return` to consume or generate optional values:

```python
from expression import effect, Some

@effect.option[int]()
def fn():
    x = yield 42
    y = yield from Some(43)

    return x + y

xs = fn()
```

This enables ["railway oriented
programming"](https://fsharpforfunandprofit.com/rop/), e.g., if one part of the
function yields from `Nothing` then the function is side-tracked
(short-circuit) and the following statements will never be executed. The end
result of the expression will be `Nothing`. Thus results from such an option
decorated function can either be `Ok(value)` or `Error(error_value)`.

```python
from expression import effect, Some, Nothing

@effect.option[int]()
def fn():
    x = yield from Nothing # or a function returning Nothing

    # -- The rest of the function will never be executed --
    y = yield from Some(43)

    return x + y

xs = fn()
assert xs is Nothing
```

For more information about options:

- [Tutorial](https://expression.readthedocs.io/en/latest/tutorial/optional_values.html)
- [API reference](https://expression.readthedocs.io/en/latest/reference/option.html)

### Result

The `Result[T, TError]` type lets you write error-tolerant code that can be
composed. A Result works similar to `Option`, but lets you define the value used
for errors, e.g., an exception type or similar. This is great when you want to
know why some operation failed (not just `Nothing`). This type serves the same
purpose of an `Either` type where `Left` is used for the error condition and `Right`
for a success value.

```python
from expression import effect, Ok, Result

@effect.result[int, Exception]()
def fn():
    x = yield from Ok(42)
    y = yield from Ok(10)
    return x + y

xs = fn()
assert isinstance(xs, Result)
```

A simplified type called `Try` is also available. It's a result type that is
pinned to `Exception` i.e., `Result[TSource, Exception]`.

### Sequence

Sequences is a thin wrapper on top of iterables and contains operations for working with
Python iterables. Iterables are immutable by design, and perfectly suited for functional
programming.

```python
import functools
from expression import pipe
from expression.collections import seq

# Normal python way. Nested functions are hard to read since you need to
# start reading from the end of the expression.
xs = range(100)
ys = functools.reduce(lambda s, x: s + x, filter(lambda x: x > 100, map(lambda x: x * 10, xs)), 0)

# With Expression, you pipe the result, so it flows from one operator to the next:
zs = pipe(
    xs,
    seq.map(lambda x: x * 10),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0),
)
assert ys == zs
```

## Tagged Unions

Tagged Unions (aka discriminated unions) may look similar to normal Python Unions. But
they are [different](https://stackoverflow.com/a/61646841) in that the operands in a
type union `(A | B)` are both types, while the cases in a tagged union type `U = A | B`
are both constructors for the type U and are not types themselves. One consequence is
that tagged unions can be nested in a way union types might not.

In Expression you make a tagged union by defining your type as a sub-class of
`TaggedUnion` with the appropriate generic types that this union represent for
each case. Then you define static or class-method constructors for creating each of the
tagged union cases.

```python
from dataclasses import dataclass
from expression import TaggedUnion, tag

@dataclass
class Rectangle:
    width: float
    length: float

@dataclass
class Circle:
    radius: float

class Shape(TaggedUnion):
    RECTANGLE = tag(Rectangle)
    CIRCLE = tag(Circle)

    @staticmethod
    def rectangle(width: float, length: float) -> Shape:
        return Shape(Shape.RECTANGLE, Rectangle(width, length))

    @staticmethod
    def circle(radius: float) -> Shape:
        return Shape(Shape.CIRCLE, Circle(radius))
```

Now you may pattern match the shape to get back the actual value:

```python
    from expression import match

    shape = Shape.Rectangle(2.3, 3.3)

    match shape:
        case Shape(value=Rectangle(width=2.3)):
            assert shape.value.width == 2.3
        case _:
            assert False
```

## Notable differences between Expression and F#

In F# modules are capitalized, in Python they are lowercase
([PEP-8](https://www.python.org/dev/peps/pep-0008/#package-and-module-names)).
E.g in F# `Option` is both a module (`OptionModule` internally) and a
type. In Python the module is `option` and the type is capitalized i.e
`Option`.

Thus in Expression you use `option` as the module to access module functions
such as `option.map` and the name `Option` for the type itself.

```pycon
>>> from expression import Option, option
>>> Option
<class 'expression.core.option.Option'>
>>> option
<module 'expression.core.option' from '/Users/dbrattli/Developer/Github/Expression/expression/core/option.py'>
```

## Common Gotchas and Pitfalls

A list of common problems and how you may solve it:

### Expression is missing the function/operator I need

Remember that everything is just a function, so you can easily implement
a custom function yourself and use it with Expression. If you think the
function is also usable for others, then please open a PR to include it
with Expression.

## Resources and References

A collection of resources that were used as reference and inspiration
for creating this library.

- F# (http://fsharp.org)
- Get Started with F# (https://aka.ms/fsharphome)
- F# as a Better Python - Phillip Carter - NDC Oslo 2020
  (https://www.youtube.com/watch?v=_QnbV6CAWXc)
- OSlash (https://github.com/dbrattli/OSlash)
- RxPY (https://github.com/ReactiveX/RxPY)
- PEP 8 -- Style Guide for Python Code (https://www.python.org/dev/peps/pep-0008/)
- PEP 342 -- Coroutines via Enhanced Generators
  (https://www.python.org/dev/peps/pep-0342/)
- PEP 380 -- Syntax for Delegating to a Subgenerator
  (https://www.python.org/dev/peps/pep-0380)
- PEP 479 -- Change StopIteration handling inside generators (https://www.python.org/dev/peps/pep-0479/)
- PEP 634 -- Structural Pattern Matching (https://www.python.org/dev/peps/pep-0634/)
- Thunks, Trampolines and Continuation Passing
  (https://jtauber.com/blog/2008/03/30/thunks,_trampolines_and_continuation_passing/)
- Tail Recursion Elimination
  (http://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html)
- Final Words on Tail Calls
  (http://neopythonic.blogspot.com/2009/04/final-words-on-tail-calls.html)
- Python is the Haskell You Never Knew You Had: Tail Call Optimization
  (https://sagnibak.github.io/blog/python-is-haskell-tail-recursion/)

## How-to Contribute

You are very welcome to contribute with suggestions or PRs :heart_eyes: It is
nice if you can try to align the code and naming with F# modules, functions,
and documentation if possible. But submit a PR even if you should feel unsure.

Code, doc-strings, and comments should also follow the [Google Python Style
Guide](https://google.github.io/styleguide/pyguide.html).

Code checks are done using

- [Black](https://github.com/psf/black)
- [flake8](https://github.com/PyCQA/flake8)
- [isort](https://github.com/PyCQA/isort)

To run code checks on changed files every time you commit, install the pre-commit hooks
by running:

```console
> pre-commit install
```

## Code of Conduct

This project follows https://www.contributor-covenant.org, see our [Code
of
Conduct](https://github.com/cognitedata/Expression/blob/main/CODE_OF_CONDUCT.md).

## License

MIT, see [LICENSE](https://github.com/cognitedata/Expression/blob/main/LICENSE).


%package -n python3-expression
Summary:	Practical functional programming for Python 3.9+
Provides:	python-expression
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-expression
# Expression

[![PyPI](https://img.shields.io/pypi/v/expression.svg)](https://pypi.python.org/pypi/Expression)
![Python package](https://github.com/cognitedata/expression/workflows/Python%20package/badge.svg)
![Upload Python Package](https://github.com/cognitedata/expression/workflows/Upload%20Python%20Package/badge.svg)
[![Documentation Status](https://readthedocs.org/projects/expression/badge/?version=latest)](https://expression.readthedocs.io/en/latest/?badge=latest)
[![codecov](https://codecov.io/gh/cognitedata/expression/branch/main/graph/badge.svg)](https://codecov.io/gh/cognitedata/expression)

> Pragmatic functional programming

Expression aims to be a solid, type-safe, pragmatic, and high performance
library for frictionless and practical functional programming in Python 3.9+.

By pragmatic, we mean that the goal of the library is to use simple abstractions
to enable you to do practical and productive functional programming in Python
(instead of being a [Monad tutorial](https://github.com/dbrattli/OSlash)).

Python is a multi-paradigm programming language that also supports functional
programming constructs such as functions, higher-order functions, lambdas, and
in many ways favors composition over inheritance.

> Better Python with F#

Expression tries to make a better Python by providing several functional
features inspired by [F#](https://fsharp.org). This serves several
purposes:

- Enable functional programming in a Pythonic way, i.e., make sure we are not
  over-abstracting things. Expression will not require purely functional
  programming as would a language like Haskell.
- Everything you learn with Expression can also be used with F#. Learn F# by
  starting in a programming language they already know. Perhaps get inspired to
  also [try out F#](https://aka.ms/fsharphome) by itself.
- Make it easier for F# developers to use Python when needed, and re-use many
  of the concepts and abstractions they already know and love.

Expression will enable you to work with Python using many of the same
programming concepts and abstractions. This enables concepts such as [Railway
oriented programming](https://fsharpforfunandprofit.com/rop/) (ROP) for better
and predictable error handling. Pipelining for workflows, computational
expressions, etc.

> _Expressions evaluate to a value. Statements do something._

F# is a functional programming language for .NET that is succinct (concise,
readable, and type-safe) and kind of
[Pythonic](https://docs.python.org/3/glossary.html). F# is in many ways very
similar to Python, but F# can also do a lot of things better than Python:

- Strongly typed, if it compiles it usually works making refactoring much
  safer. You can trust the type-system. With [mypy](http://mypy-lang.org/) or
  [Pylance](https://github.com/microsoft/pylance-release) you often wonder who
  is right and who is wrong.
- Type inference, the compiler deduces types during compilation
- Expression based language

## Getting Started

You can install the latest `expression` from PyPI by running `pip` (or
`pip3`). Note that `expression` only works for Python 3.9+.

```console
> pip3 install expression
```

## Goals

- Industrial strength library for functional programming in Python.
- The resulting code should look and feel like Python
  ([PEP-8](https://www.python.org/dev/peps/pep-0008/)). We want to make a
  better Python, not some obscure DSL or academic Monad tutorial.
- Provide pipelining and pipe friendly methods. Compose all the things!
- Dot-chaining on objects as an alternative syntax to pipes.
- Lower the cognitive load on the programmer by:
  - Avoid currying, not supported in Python by default and not a well known
    concept by Python programmers.
  - Avoid operator (`|`, `>>`, etc) overloading, this usually confuses more
    than it helps.
  - Avoid recursion. Recursion is not normally used in Python and any use of it
    should be hidden within the SDK.
- Provide [type-hints](https://docs.python.org/3/library/typing.html) for all
  functions and methods.
- Support PEP 634 and structural pattern matching.
- Code must pass strict static type checking by
  [pylance](https://devblogs.microsoft.com/python/announcing-pylance-fast-feature-rich-language-support-for-python-in-visual-studio-code/).
  Pylance is awesome, use it!
- [Pydantic](https://pydantic-docs.helpmanual.io/) friendly data types. Use Expression
  types as part of your Pydantic data model and (de)serialize to/from JSON.

## Supported features

Expression will never provide you with all the features of F# and .NET. We are
providing a few of the features we think are useful, and will add more
on-demand as we go along.

- **Pipelining** - for creating workflows.
- **Composition** - for composing and creating new operators.
- **Fluent or Functional** syntax, i.e., dot chain or pipeline operators.
- **Pattern Matching** - an alternative flow control to `if-elif-else`.
- **Error Handling** - Several error handling types.
  - **Option** - for optional stuff and better `None` handling.
  - **Result** - for better error handling and enables railway-oriented
    programming in Python.
  - **Try** - a simpler result type that pins the error to an Exception.
- **Collections** - immutable collections.
  - **TypedArray** - a generic array type that abstracts the details of
    `bytearray`, `array.array` and `list` modules.
  - **Sequence** - a better
    [itertools](https://docs.python.org/3/library/itertools.html) and
    fully compatible with Python iterables.
  - **Block** - a frozen and immutable list type.
  - **Map** - a frozen and immutable dictionary type.
  - **AsyncSeq** - Asynchronous iterables.
  - **AsyncObservable** - Asynchronous observables. Provided separately
    by [aioreactive](https://github.com/dbrattli/aioreactive).
- **Data Modelling** - sum and product types
  - **TaggedUnion** - A tagged (discriminated) union type.
- **Parser Combinators** - A recursive decent string parser combinator
  library.
- **Effects**: - lightweight computational expressions for Python. This
  is amazing stuff.
  - **option** - an optional world for working with optional values.
  - **result** - an error handling world for working with result values.
- **Mailbox Processor**: for lock free programming using the [Actor
  model](https://en.wikipedia.org/wiki/Actor_model).
- **Cancellation Token**: for cancellation of asynchronous (and
  synchronous) workflows.
- **Disposable**: For resource management.

### Pipelining

Expression provides a `pipe` function similar to `|>` in F#. We don't want to
overload any Python operators, e.g., `|` so `pipe` is a plain old function taking
N-arguments, and will let you pipe a value through any number of functions.

```python
from expression import pipe

v = 1
fn = lambda x: x + 1
gn = lambda x: x * 2

assert pipe(v, fn, gn) == gn(fn(v))
```

Expression objects (e.g., `Some`, `Seq`, `Result`) also have a `pipe` method, so you can dot chain pipelines
directly on the object:

```python
from expression import Some

v = Some(1)
fn = lambda x: x.map(lambda y: y + 1)
gn = lambda x: x.map(lambda y: y * 2)

assert v.pipe(fn, gn) == gn(fn(v))
```

So for example with sequences you may create sequence transforming
pipelines:

```python
from expression.collections import seq, Seq

xs = Seq.of(9, 10, 11)
ys = xs.pipe(
    seq.map(lambda x: x * 10),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0)
)

assert ys == 110
```

### Composition

Functions may even be composed directly into custom operators:

```python
from expression import compose
from expression.collections import seq, Seq

xs = Seq.of(9, 10, 11)
custom = compose(
    seq.map(lambda x: x * 10),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0)
)
ys = custom(xs)

assert ys == 110
```

### Fluent and Functional

Expression can be used both with a fluent or functional syntax (or both.)

#### Fluent syntax

The fluent syntax uses methods and is very compact. But it might get you into
trouble for large pipelines since it's not a natural way of adding line breaks.

```python
from expression.collections import Seq

xs = Seq.of(1, 2, 3)
ys = xs.map(lambda x: x * 100).filter(lambda x: x > 100).fold(lambda s, x: s + x, 0)
```

Note that fluent syntax is probably the better choice if you use mypy
for type checking since mypy may have problems inferring types through
larger pipelines.

#### Functional syntax

The functional syntax is a bit more verbose but you can easily add new
operations on new lines. The functional syntax is great to use together
with pylance/pyright.

```python
from expression import pipe
from expression.collections import seq, Seq

xs = Seq.of(1, 2, 3)
ys = pipe(xs,
    seq.map(lambda x: x * 100),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0),
)
```

Both fluent and functional syntax may be mixed and even pipe can be used
fluently.

```python
from expression.collections import seq, Seq
xs = Seq.of(1, 2, 3).pipe(seq.map(...))
```

### Option

The `Option` type is used when a function or method cannot produce a meaningful
output for a given input.

An option value may have a value of a given type, i.e., `Some(value)`, or it might
not have any meaningful value, i.e., `Nothing`.

```python
from expression import Some, Nothing, Option

def keep_positive(a: int) -> Option[int]:
    if a > 0:
        return Some(a)

    return Nothing
```

```python
from expression import Option, Ok
def exists(x : Option[int]) -> bool:
    match x:
        case Some(_):
            return True
    return False
```

### Option as an effect

Effects in Expression is implemented as specially decorated coroutines
([enhanced generators](https://www.python.org/dev/peps/pep-0342/)) using
`yield`, `yield from` and `return` to consume or generate optional values:

```python
from expression import effect, Some

@effect.option[int]()
def fn():
    x = yield 42
    y = yield from Some(43)

    return x + y

xs = fn()
```

This enables ["railway oriented
programming"](https://fsharpforfunandprofit.com/rop/), e.g., if one part of the
function yields from `Nothing` then the function is side-tracked
(short-circuit) and the following statements will never be executed. The end
result of the expression will be `Nothing`. Thus results from such an option
decorated function can either be `Ok(value)` or `Error(error_value)`.

```python
from expression import effect, Some, Nothing

@effect.option[int]()
def fn():
    x = yield from Nothing # or a function returning Nothing

    # -- The rest of the function will never be executed --
    y = yield from Some(43)

    return x + y

xs = fn()
assert xs is Nothing
```

For more information about options:

- [Tutorial](https://expression.readthedocs.io/en/latest/tutorial/optional_values.html)
- [API reference](https://expression.readthedocs.io/en/latest/reference/option.html)

### Result

The `Result[T, TError]` type lets you write error-tolerant code that can be
composed. A Result works similar to `Option`, but lets you define the value used
for errors, e.g., an exception type or similar. This is great when you want to
know why some operation failed (not just `Nothing`). This type serves the same
purpose of an `Either` type where `Left` is used for the error condition and `Right`
for a success value.

```python
from expression import effect, Ok, Result

@effect.result[int, Exception]()
def fn():
    x = yield from Ok(42)
    y = yield from Ok(10)
    return x + y

xs = fn()
assert isinstance(xs, Result)
```

A simplified type called `Try` is also available. It's a result type that is
pinned to `Exception` i.e., `Result[TSource, Exception]`.

### Sequence

Sequences is a thin wrapper on top of iterables and contains operations for working with
Python iterables. Iterables are immutable by design, and perfectly suited for functional
programming.

```python
import functools
from expression import pipe
from expression.collections import seq

# Normal python way. Nested functions are hard to read since you need to
# start reading from the end of the expression.
xs = range(100)
ys = functools.reduce(lambda s, x: s + x, filter(lambda x: x > 100, map(lambda x: x * 10, xs)), 0)

# With Expression, you pipe the result, so it flows from one operator to the next:
zs = pipe(
    xs,
    seq.map(lambda x: x * 10),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0),
)
assert ys == zs
```

## Tagged Unions

Tagged Unions (aka discriminated unions) may look similar to normal Python Unions. But
they are [different](https://stackoverflow.com/a/61646841) in that the operands in a
type union `(A | B)` are both types, while the cases in a tagged union type `U = A | B`
are both constructors for the type U and are not types themselves. One consequence is
that tagged unions can be nested in a way union types might not.

In Expression you make a tagged union by defining your type as a sub-class of
`TaggedUnion` with the appropriate generic types that this union represent for
each case. Then you define static or class-method constructors for creating each of the
tagged union cases.

```python
from dataclasses import dataclass
from expression import TaggedUnion, tag

@dataclass
class Rectangle:
    width: float
    length: float

@dataclass
class Circle:
    radius: float

class Shape(TaggedUnion):
    RECTANGLE = tag(Rectangle)
    CIRCLE = tag(Circle)

    @staticmethod
    def rectangle(width: float, length: float) -> Shape:
        return Shape(Shape.RECTANGLE, Rectangle(width, length))

    @staticmethod
    def circle(radius: float) -> Shape:
        return Shape(Shape.CIRCLE, Circle(radius))
```

Now you may pattern match the shape to get back the actual value:

```python
    from expression import match

    shape = Shape.Rectangle(2.3, 3.3)

    match shape:
        case Shape(value=Rectangle(width=2.3)):
            assert shape.value.width == 2.3
        case _:
            assert False
```

## Notable differences between Expression and F#

In F# modules are capitalized, in Python they are lowercase
([PEP-8](https://www.python.org/dev/peps/pep-0008/#package-and-module-names)).
E.g in F# `Option` is both a module (`OptionModule` internally) and a
type. In Python the module is `option` and the type is capitalized i.e
`Option`.

Thus in Expression you use `option` as the module to access module functions
such as `option.map` and the name `Option` for the type itself.

```pycon
>>> from expression import Option, option
>>> Option
<class 'expression.core.option.Option'>
>>> option
<module 'expression.core.option' from '/Users/dbrattli/Developer/Github/Expression/expression/core/option.py'>
```

## Common Gotchas and Pitfalls

A list of common problems and how you may solve it:

### Expression is missing the function/operator I need

Remember that everything is just a function, so you can easily implement
a custom function yourself and use it with Expression. If you think the
function is also usable for others, then please open a PR to include it
with Expression.

## Resources and References

A collection of resources that were used as reference and inspiration
for creating this library.

- F# (http://fsharp.org)
- Get Started with F# (https://aka.ms/fsharphome)
- F# as a Better Python - Phillip Carter - NDC Oslo 2020
  (https://www.youtube.com/watch?v=_QnbV6CAWXc)
- OSlash (https://github.com/dbrattli/OSlash)
- RxPY (https://github.com/ReactiveX/RxPY)
- PEP 8 -- Style Guide for Python Code (https://www.python.org/dev/peps/pep-0008/)
- PEP 342 -- Coroutines via Enhanced Generators
  (https://www.python.org/dev/peps/pep-0342/)
- PEP 380 -- Syntax for Delegating to a Subgenerator
  (https://www.python.org/dev/peps/pep-0380)
- PEP 479 -- Change StopIteration handling inside generators (https://www.python.org/dev/peps/pep-0479/)
- PEP 634 -- Structural Pattern Matching (https://www.python.org/dev/peps/pep-0634/)
- Thunks, Trampolines and Continuation Passing
  (https://jtauber.com/blog/2008/03/30/thunks,_trampolines_and_continuation_passing/)
- Tail Recursion Elimination
  (http://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html)
- Final Words on Tail Calls
  (http://neopythonic.blogspot.com/2009/04/final-words-on-tail-calls.html)
- Python is the Haskell You Never Knew You Had: Tail Call Optimization
  (https://sagnibak.github.io/blog/python-is-haskell-tail-recursion/)

## How-to Contribute

You are very welcome to contribute with suggestions or PRs :heart_eyes: It is
nice if you can try to align the code and naming with F# modules, functions,
and documentation if possible. But submit a PR even if you should feel unsure.

Code, doc-strings, and comments should also follow the [Google Python Style
Guide](https://google.github.io/styleguide/pyguide.html).

Code checks are done using

- [Black](https://github.com/psf/black)
- [flake8](https://github.com/PyCQA/flake8)
- [isort](https://github.com/PyCQA/isort)

To run code checks on changed files every time you commit, install the pre-commit hooks
by running:

```console
> pre-commit install
```

## Code of Conduct

This project follows https://www.contributor-covenant.org, see our [Code
of
Conduct](https://github.com/cognitedata/Expression/blob/main/CODE_OF_CONDUCT.md).

## License

MIT, see [LICENSE](https://github.com/cognitedata/Expression/blob/main/LICENSE).


%package help
Summary:	Development documents and examples for expression
Provides:	python3-expression-doc
%description help
# Expression

[![PyPI](https://img.shields.io/pypi/v/expression.svg)](https://pypi.python.org/pypi/Expression)
![Python package](https://github.com/cognitedata/expression/workflows/Python%20package/badge.svg)
![Upload Python Package](https://github.com/cognitedata/expression/workflows/Upload%20Python%20Package/badge.svg)
[![Documentation Status](https://readthedocs.org/projects/expression/badge/?version=latest)](https://expression.readthedocs.io/en/latest/?badge=latest)
[![codecov](https://codecov.io/gh/cognitedata/expression/branch/main/graph/badge.svg)](https://codecov.io/gh/cognitedata/expression)

> Pragmatic functional programming

Expression aims to be a solid, type-safe, pragmatic, and high performance
library for frictionless and practical functional programming in Python 3.9+.

By pragmatic, we mean that the goal of the library is to use simple abstractions
to enable you to do practical and productive functional programming in Python
(instead of being a [Monad tutorial](https://github.com/dbrattli/OSlash)).

Python is a multi-paradigm programming language that also supports functional
programming constructs such as functions, higher-order functions, lambdas, and
in many ways favors composition over inheritance.

> Better Python with F#

Expression tries to make a better Python by providing several functional
features inspired by [F#](https://fsharp.org). This serves several
purposes:

- Enable functional programming in a Pythonic way, i.e., make sure we are not
  over-abstracting things. Expression will not require purely functional
  programming as would a language like Haskell.
- Everything you learn with Expression can also be used with F#. Learn F# by
  starting in a programming language they already know. Perhaps get inspired to
  also [try out F#](https://aka.ms/fsharphome) by itself.
- Make it easier for F# developers to use Python when needed, and re-use many
  of the concepts and abstractions they already know and love.

Expression will enable you to work with Python using many of the same
programming concepts and abstractions. This enables concepts such as [Railway
oriented programming](https://fsharpforfunandprofit.com/rop/) (ROP) for better
and predictable error handling. Pipelining for workflows, computational
expressions, etc.

> _Expressions evaluate to a value. Statements do something._

F# is a functional programming language for .NET that is succinct (concise,
readable, and type-safe) and kind of
[Pythonic](https://docs.python.org/3/glossary.html). F# is in many ways very
similar to Python, but F# can also do a lot of things better than Python:

- Strongly typed, if it compiles it usually works making refactoring much
  safer. You can trust the type-system. With [mypy](http://mypy-lang.org/) or
  [Pylance](https://github.com/microsoft/pylance-release) you often wonder who
  is right and who is wrong.
- Type inference, the compiler deduces types during compilation
- Expression based language

## Getting Started

You can install the latest `expression` from PyPI by running `pip` (or
`pip3`). Note that `expression` only works for Python 3.9+.

```console
> pip3 install expression
```

## Goals

- Industrial strength library for functional programming in Python.
- The resulting code should look and feel like Python
  ([PEP-8](https://www.python.org/dev/peps/pep-0008/)). We want to make a
  better Python, not some obscure DSL or academic Monad tutorial.
- Provide pipelining and pipe friendly methods. Compose all the things!
- Dot-chaining on objects as an alternative syntax to pipes.
- Lower the cognitive load on the programmer by:
  - Avoid currying, not supported in Python by default and not a well known
    concept by Python programmers.
  - Avoid operator (`|`, `>>`, etc) overloading, this usually confuses more
    than it helps.
  - Avoid recursion. Recursion is not normally used in Python and any use of it
    should be hidden within the SDK.
- Provide [type-hints](https://docs.python.org/3/library/typing.html) for all
  functions and methods.
- Support PEP 634 and structural pattern matching.
- Code must pass strict static type checking by
  [pylance](https://devblogs.microsoft.com/python/announcing-pylance-fast-feature-rich-language-support-for-python-in-visual-studio-code/).
  Pylance is awesome, use it!
- [Pydantic](https://pydantic-docs.helpmanual.io/) friendly data types. Use Expression
  types as part of your Pydantic data model and (de)serialize to/from JSON.

## Supported features

Expression will never provide you with all the features of F# and .NET. We are
providing a few of the features we think are useful, and will add more
on-demand as we go along.

- **Pipelining** - for creating workflows.
- **Composition** - for composing and creating new operators.
- **Fluent or Functional** syntax, i.e., dot chain or pipeline operators.
- **Pattern Matching** - an alternative flow control to `if-elif-else`.
- **Error Handling** - Several error handling types.
  - **Option** - for optional stuff and better `None` handling.
  - **Result** - for better error handling and enables railway-oriented
    programming in Python.
  - **Try** - a simpler result type that pins the error to an Exception.
- **Collections** - immutable collections.
  - **TypedArray** - a generic array type that abstracts the details of
    `bytearray`, `array.array` and `list` modules.
  - **Sequence** - a better
    [itertools](https://docs.python.org/3/library/itertools.html) and
    fully compatible with Python iterables.
  - **Block** - a frozen and immutable list type.
  - **Map** - a frozen and immutable dictionary type.
  - **AsyncSeq** - Asynchronous iterables.
  - **AsyncObservable** - Asynchronous observables. Provided separately
    by [aioreactive](https://github.com/dbrattli/aioreactive).
- **Data Modelling** - sum and product types
  - **TaggedUnion** - A tagged (discriminated) union type.
- **Parser Combinators** - A recursive decent string parser combinator
  library.
- **Effects**: - lightweight computational expressions for Python. This
  is amazing stuff.
  - **option** - an optional world for working with optional values.
  - **result** - an error handling world for working with result values.
- **Mailbox Processor**: for lock free programming using the [Actor
  model](https://en.wikipedia.org/wiki/Actor_model).
- **Cancellation Token**: for cancellation of asynchronous (and
  synchronous) workflows.
- **Disposable**: For resource management.

### Pipelining

Expression provides a `pipe` function similar to `|>` in F#. We don't want to
overload any Python operators, e.g., `|` so `pipe` is a plain old function taking
N-arguments, and will let you pipe a value through any number of functions.

```python
from expression import pipe

v = 1
fn = lambda x: x + 1
gn = lambda x: x * 2

assert pipe(v, fn, gn) == gn(fn(v))
```

Expression objects (e.g., `Some`, `Seq`, `Result`) also have a `pipe` method, so you can dot chain pipelines
directly on the object:

```python
from expression import Some

v = Some(1)
fn = lambda x: x.map(lambda y: y + 1)
gn = lambda x: x.map(lambda y: y * 2)

assert v.pipe(fn, gn) == gn(fn(v))
```

So for example with sequences you may create sequence transforming
pipelines:

```python
from expression.collections import seq, Seq

xs = Seq.of(9, 10, 11)
ys = xs.pipe(
    seq.map(lambda x: x * 10),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0)
)

assert ys == 110
```

### Composition

Functions may even be composed directly into custom operators:

```python
from expression import compose
from expression.collections import seq, Seq

xs = Seq.of(9, 10, 11)
custom = compose(
    seq.map(lambda x: x * 10),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0)
)
ys = custom(xs)

assert ys == 110
```

### Fluent and Functional

Expression can be used both with a fluent or functional syntax (or both.)

#### Fluent syntax

The fluent syntax uses methods and is very compact. But it might get you into
trouble for large pipelines since it's not a natural way of adding line breaks.

```python
from expression.collections import Seq

xs = Seq.of(1, 2, 3)
ys = xs.map(lambda x: x * 100).filter(lambda x: x > 100).fold(lambda s, x: s + x, 0)
```

Note that fluent syntax is probably the better choice if you use mypy
for type checking since mypy may have problems inferring types through
larger pipelines.

#### Functional syntax

The functional syntax is a bit more verbose but you can easily add new
operations on new lines. The functional syntax is great to use together
with pylance/pyright.

```python
from expression import pipe
from expression.collections import seq, Seq

xs = Seq.of(1, 2, 3)
ys = pipe(xs,
    seq.map(lambda x: x * 100),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0),
)
```

Both fluent and functional syntax may be mixed and even pipe can be used
fluently.

```python
from expression.collections import seq, Seq
xs = Seq.of(1, 2, 3).pipe(seq.map(...))
```

### Option

The `Option` type is used when a function or method cannot produce a meaningful
output for a given input.

An option value may have a value of a given type, i.e., `Some(value)`, or it might
not have any meaningful value, i.e., `Nothing`.

```python
from expression import Some, Nothing, Option

def keep_positive(a: int) -> Option[int]:
    if a > 0:
        return Some(a)

    return Nothing
```

```python
from expression import Option, Ok
def exists(x : Option[int]) -> bool:
    match x:
        case Some(_):
            return True
    return False
```

### Option as an effect

Effects in Expression is implemented as specially decorated coroutines
([enhanced generators](https://www.python.org/dev/peps/pep-0342/)) using
`yield`, `yield from` and `return` to consume or generate optional values:

```python
from expression import effect, Some

@effect.option[int]()
def fn():
    x = yield 42
    y = yield from Some(43)

    return x + y

xs = fn()
```

This enables ["railway oriented
programming"](https://fsharpforfunandprofit.com/rop/), e.g., if one part of the
function yields from `Nothing` then the function is side-tracked
(short-circuit) and the following statements will never be executed. The end
result of the expression will be `Nothing`. Thus results from such an option
decorated function can either be `Ok(value)` or `Error(error_value)`.

```python
from expression import effect, Some, Nothing

@effect.option[int]()
def fn():
    x = yield from Nothing # or a function returning Nothing

    # -- The rest of the function will never be executed --
    y = yield from Some(43)

    return x + y

xs = fn()
assert xs is Nothing
```

For more information about options:

- [Tutorial](https://expression.readthedocs.io/en/latest/tutorial/optional_values.html)
- [API reference](https://expression.readthedocs.io/en/latest/reference/option.html)

### Result

The `Result[T, TError]` type lets you write error-tolerant code that can be
composed. A Result works similar to `Option`, but lets you define the value used
for errors, e.g., an exception type or similar. This is great when you want to
know why some operation failed (not just `Nothing`). This type serves the same
purpose of an `Either` type where `Left` is used for the error condition and `Right`
for a success value.

```python
from expression import effect, Ok, Result

@effect.result[int, Exception]()
def fn():
    x = yield from Ok(42)
    y = yield from Ok(10)
    return x + y

xs = fn()
assert isinstance(xs, Result)
```

A simplified type called `Try` is also available. It's a result type that is
pinned to `Exception` i.e., `Result[TSource, Exception]`.

### Sequence

Sequences is a thin wrapper on top of iterables and contains operations for working with
Python iterables. Iterables are immutable by design, and perfectly suited for functional
programming.

```python
import functools
from expression import pipe
from expression.collections import seq

# Normal python way. Nested functions are hard to read since you need to
# start reading from the end of the expression.
xs = range(100)
ys = functools.reduce(lambda s, x: s + x, filter(lambda x: x > 100, map(lambda x: x * 10, xs)), 0)

# With Expression, you pipe the result, so it flows from one operator to the next:
zs = pipe(
    xs,
    seq.map(lambda x: x * 10),
    seq.filter(lambda x: x > 100),
    seq.fold(lambda s, x: s + x, 0),
)
assert ys == zs
```

## Tagged Unions

Tagged Unions (aka discriminated unions) may look similar to normal Python Unions. But
they are [different](https://stackoverflow.com/a/61646841) in that the operands in a
type union `(A | B)` are both types, while the cases in a tagged union type `U = A | B`
are both constructors for the type U and are not types themselves. One consequence is
that tagged unions can be nested in a way union types might not.

In Expression you make a tagged union by defining your type as a sub-class of
`TaggedUnion` with the appropriate generic types that this union represent for
each case. Then you define static or class-method constructors for creating each of the
tagged union cases.

```python
from dataclasses import dataclass
from expression import TaggedUnion, tag

@dataclass
class Rectangle:
    width: float
    length: float

@dataclass
class Circle:
    radius: float

class Shape(TaggedUnion):
    RECTANGLE = tag(Rectangle)
    CIRCLE = tag(Circle)

    @staticmethod
    def rectangle(width: float, length: float) -> Shape:
        return Shape(Shape.RECTANGLE, Rectangle(width, length))

    @staticmethod
    def circle(radius: float) -> Shape:
        return Shape(Shape.CIRCLE, Circle(radius))
```

Now you may pattern match the shape to get back the actual value:

```python
    from expression import match

    shape = Shape.Rectangle(2.3, 3.3)

    match shape:
        case Shape(value=Rectangle(width=2.3)):
            assert shape.value.width == 2.3
        case _:
            assert False
```

## Notable differences between Expression and F#

In F# modules are capitalized, in Python they are lowercase
([PEP-8](https://www.python.org/dev/peps/pep-0008/#package-and-module-names)).
E.g in F# `Option` is both a module (`OptionModule` internally) and a
type. In Python the module is `option` and the type is capitalized i.e
`Option`.

Thus in Expression you use `option` as the module to access module functions
such as `option.map` and the name `Option` for the type itself.

```pycon
>>> from expression import Option, option
>>> Option
<class 'expression.core.option.Option'>
>>> option
<module 'expression.core.option' from '/Users/dbrattli/Developer/Github/Expression/expression/core/option.py'>
```

## Common Gotchas and Pitfalls

A list of common problems and how you may solve it:

### Expression is missing the function/operator I need

Remember that everything is just a function, so you can easily implement
a custom function yourself and use it with Expression. If you think the
function is also usable for others, then please open a PR to include it
with Expression.

## Resources and References

A collection of resources that were used as reference and inspiration
for creating this library.

- F# (http://fsharp.org)
- Get Started with F# (https://aka.ms/fsharphome)
- F# as a Better Python - Phillip Carter - NDC Oslo 2020
  (https://www.youtube.com/watch?v=_QnbV6CAWXc)
- OSlash (https://github.com/dbrattli/OSlash)
- RxPY (https://github.com/ReactiveX/RxPY)
- PEP 8 -- Style Guide for Python Code (https://www.python.org/dev/peps/pep-0008/)
- PEP 342 -- Coroutines via Enhanced Generators
  (https://www.python.org/dev/peps/pep-0342/)
- PEP 380 -- Syntax for Delegating to a Subgenerator
  (https://www.python.org/dev/peps/pep-0380)
- PEP 479 -- Change StopIteration handling inside generators (https://www.python.org/dev/peps/pep-0479/)
- PEP 634 -- Structural Pattern Matching (https://www.python.org/dev/peps/pep-0634/)
- Thunks, Trampolines and Continuation Passing
  (https://jtauber.com/blog/2008/03/30/thunks,_trampolines_and_continuation_passing/)
- Tail Recursion Elimination
  (http://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html)
- Final Words on Tail Calls
  (http://neopythonic.blogspot.com/2009/04/final-words-on-tail-calls.html)
- Python is the Haskell You Never Knew You Had: Tail Call Optimization
  (https://sagnibak.github.io/blog/python-is-haskell-tail-recursion/)

## How-to Contribute

You are very welcome to contribute with suggestions or PRs :heart_eyes: It is
nice if you can try to align the code and naming with F# modules, functions,
and documentation if possible. But submit a PR even if you should feel unsure.

Code, doc-strings, and comments should also follow the [Google Python Style
Guide](https://google.github.io/styleguide/pyguide.html).

Code checks are done using

- [Black](https://github.com/psf/black)
- [flake8](https://github.com/PyCQA/flake8)
- [isort](https://github.com/PyCQA/isort)

To run code checks on changed files every time you commit, install the pre-commit hooks
by running:

```console
> pre-commit install
```

## Code of Conduct

This project follows https://www.contributor-covenant.org, see our [Code
of
Conduct](https://github.com/cognitedata/Expression/blob/main/CODE_OF_CONDUCT.md).

## License

MIT, see [LICENSE](https://github.com/cognitedata/Expression/blob/main/LICENSE).


%prep
%autosetup -n expression-4.2.4

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-expression -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 4.2.4-1
- Package Spec generated