diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-31 06:48:24 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-31 06:48:24 +0000 |
commit | 8e2d1d4a4e57e8d06b7e343573bd3706dc1926c1 (patch) | |
tree | 7e81c1116035f91914e7bd04cdfb14f71cd2840c | |
parent | 5d2a5a37743d891d798f6fd240b9413e68cc9a39 (diff) |
automatic import of python-face-detection
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-face-detection.spec | 486 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 488 insertions, 0 deletions
@@ -0,0 +1 @@ +/face_detection-0.2.2.tar.gz diff --git a/python-face-detection.spec b/python-face-detection.spec new file mode 100644 index 0000000..ddf8e9e --- /dev/null +++ b/python-face-detection.spec @@ -0,0 +1,486 @@ +%global _empty_manifest_terminate_build 0 +Name: python-face-detection +Version: 0.2.2 +Release: 1 +Summary: A simple and lightweight package for state of the art face detection with GPU support. +License: apache-2.0 +URL: https://github.com/hukkelas/DSFD-Pytorch-Inference +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/2f/dd/abf4ac463b376596b1e3e35d04c58f86a9b45c3c433448b4b5e0b3d5f467/face_detection-0.2.2.tar.gz +BuildArch: noarch + +Requires: python3-torch +Requires: python3-torchvision +Requires: python3-numpy + +%description +# State of the Art Face Detection in Pytorch with DSFD and RetinaFace + +This repository includes: +- A High-Performance Pytorch Implementation of the paper "[DSFD: Dual Shot Face Detector" (CVPR 2019).](http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_DSFD_Dual_Shot_Face_Detector_CVPR_2019_paper.pdf) adapted from the [original source code](https://github.com/TencentYoutuResearch/FaceDetection-DSFD). +- Lightweight single-shot face detection from the paper [RetinaFace: Single-stage Dense Face Localisation in the Wild](https://arxiv.org/abs/1905.00641) adapted from https://github.com/biubug6/Pytorch_Retinaface. + + + +**NOTE** This implementation can only be used for inference of a selection of models and all training scripts are removed. If you want to finetune any models, we recommend you to use the original source code. + +## Install + +You can install this repository with pip (requires python>=3.6); + +```bash +pip install git+https://github.com/hukkelas/DSFD-Pytorch-Inference.git +``` + +You can also install with the `setup.py` + +```bash +python3 setup.py install +``` + +## Getting started +Run +``` +python3 test.py +``` +This will look for images in the `images/` folder, and save the results in the same folder with an ending `_out.jpg` + +## Simple API +To perform detection you can simple use the following lines: + +```python +import cv2 +import face_detection +print(face_detection.available_detectors) +detector = face_detection.build_detector( + "DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3) +# BGR to RGB +im = cv2.imread("path_to_im.jpg")[:, :, ::-1] + +detections = detector.detect(im) +``` + +This will return a tensor with shape `[N, 5]`, where N is number of faces and the five elements are `[xmin, ymin, xmax, ymax, detection_confidence]` + +### Batched inference + +```python +import numpy as np +import face_detection +print(face_detection.available_detectors) +detector = face_detection.build_detector( + "DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3) +# [batch size, height, width, 3] +images_dummy = np.zeros((2, 512, 512, 3)) + +detections = detector.batched_detect(im) +``` + + +## Improvements + +### Difference from DSFD +For the original source code, see [here](https://github.com/TencentYoutuResearch/FaceDetection-DSFD). +- Removal of all unnecessary files for training / loading VGG models. +- Improve the inference time by about 30x (from ~6s to 0.2) with rough estimates using `time` (Measured on a V100-32GB GPU). + +The main improvements in inference time comes from: + +- Replacing non-maximum-suppression to a [highly optimized torchvision version](https://github.com/pytorch/vision/blob/19315e313511fead3597e23075552255d07fcb2a/torchvision/ops/boxes.py#L5) +- Refactoring `init_priors`in the [SSD model](dsfd/face_ssd.py) to cache previous prior sizes (no need to generate this per forward pass). +- Refactoring the forward pass in `Detect` in [`utils.py`](dsfd/utils.py) to perform confidence thresholding before non-maximum suppression +- Minor changes in the forward pass to use pytorch 1.0 features + +### Difference from RetinaFace +For the original source code, see [here](https://github.com/biubug6/Pytorch_Retinaface). + +We've done the following improvements: +- Remove gradient computation for inference (`torch.no_grad`). +- Replacing non-maximum-suppression to a [highly optimized torchvision version](https://github.com/pytorch/vision/blob/19315e313511fead3597e23075552255d07fcb2a/torchvision/ops/boxes.py#L5) + +## Inference time + +This is **very roughly** estimated on a 1024x687 image. The reported time is the average over 1000 forward passes on a single image. (With no cudnn benchmarking and no fp16 computation). + + +| | DSFDDetector | RetinaNetResNet50 | RetinaNetMobileNetV1 | +| -|-|-|-| +| CPU (Intel 2.2GHz i7) *| 17,496 ms (0.06 FPS) | 2970ms (0.33 FPS) | 270ms (3.7 FPS) | +| NVIDIA V100-32GB | 100ms (10 FPS) | | | +| NVIDIA GTX 1060 6GB | 341ms (2.9 FPS) | 76.6ms (13 FPS) | 48.2ms (20.7 FPS) | +| NVIDIA T4 16 GB | 482 ms (2.1 FPS) | 181ms (5.5 FPS) | 178ms (5.6 FPS) | + +*Done over 100 forward passes on a MacOS Mid 2014, 15-Inch. + + + +## Changelog + - September 1st 2020: added support for fp16/mixed precision inference + - September 24th 2020: added support for TensorRT. + + +## TensorRT Inference (Experimental) +You can run RetinaFace ResNet-50 with TensorRT: + +```python +from face_detection.retinaface.tensorrt_wrap import TensorRTRetinaFace + +inference_imshape =(480, 640) # Input to the CNN +input_imshape = (1080, 1920) # Input for original video source +detector = TensorRTRetinaFace(input_imshape, imshape) +boxes, landmarks, scores = detector.infer(image) + +``` + +## Citation +If you find this code useful, remember to cite the original authors: +``` +@inproceedings{li2018dsfd, + title={DSFD: Dual Shot Face Detector}, + author={Li, Jian and Wang, Yabiao and Wang, Changan and Tai, Ying and Qian, Jianjun and Yang, Jian and Wang, Chengjie and Li, Jilin and Huang, Feiyue}, + booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, + year={2019} +} + +@inproceedings{deng2019retinaface, + title={RetinaFace: Single-stage Dense Face Localisation in the Wild}, + author={Deng, Jiankang and Guo, Jia and Yuxiang, Zhou and Jinke Yu and Irene Kotsia and Zafeiriou, Stefanos}, + booktitle={arxiv}, + year={2019} + +``` + + + + +%package -n python3-face-detection +Summary: A simple and lightweight package for state of the art face detection with GPU support. +Provides: python-face-detection +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-face-detection +# State of the Art Face Detection in Pytorch with DSFD and RetinaFace + +This repository includes: +- A High-Performance Pytorch Implementation of the paper "[DSFD: Dual Shot Face Detector" (CVPR 2019).](http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_DSFD_Dual_Shot_Face_Detector_CVPR_2019_paper.pdf) adapted from the [original source code](https://github.com/TencentYoutuResearch/FaceDetection-DSFD). +- Lightweight single-shot face detection from the paper [RetinaFace: Single-stage Dense Face Localisation in the Wild](https://arxiv.org/abs/1905.00641) adapted from https://github.com/biubug6/Pytorch_Retinaface. + + + +**NOTE** This implementation can only be used for inference of a selection of models and all training scripts are removed. If you want to finetune any models, we recommend you to use the original source code. + +## Install + +You can install this repository with pip (requires python>=3.6); + +```bash +pip install git+https://github.com/hukkelas/DSFD-Pytorch-Inference.git +``` + +You can also install with the `setup.py` + +```bash +python3 setup.py install +``` + +## Getting started +Run +``` +python3 test.py +``` +This will look for images in the `images/` folder, and save the results in the same folder with an ending `_out.jpg` + +## Simple API +To perform detection you can simple use the following lines: + +```python +import cv2 +import face_detection +print(face_detection.available_detectors) +detector = face_detection.build_detector( + "DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3) +# BGR to RGB +im = cv2.imread("path_to_im.jpg")[:, :, ::-1] + +detections = detector.detect(im) +``` + +This will return a tensor with shape `[N, 5]`, where N is number of faces and the five elements are `[xmin, ymin, xmax, ymax, detection_confidence]` + +### Batched inference + +```python +import numpy as np +import face_detection +print(face_detection.available_detectors) +detector = face_detection.build_detector( + "DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3) +# [batch size, height, width, 3] +images_dummy = np.zeros((2, 512, 512, 3)) + +detections = detector.batched_detect(im) +``` + + +## Improvements + +### Difference from DSFD +For the original source code, see [here](https://github.com/TencentYoutuResearch/FaceDetection-DSFD). +- Removal of all unnecessary files for training / loading VGG models. +- Improve the inference time by about 30x (from ~6s to 0.2) with rough estimates using `time` (Measured on a V100-32GB GPU). + +The main improvements in inference time comes from: + +- Replacing non-maximum-suppression to a [highly optimized torchvision version](https://github.com/pytorch/vision/blob/19315e313511fead3597e23075552255d07fcb2a/torchvision/ops/boxes.py#L5) +- Refactoring `init_priors`in the [SSD model](dsfd/face_ssd.py) to cache previous prior sizes (no need to generate this per forward pass). +- Refactoring the forward pass in `Detect` in [`utils.py`](dsfd/utils.py) to perform confidence thresholding before non-maximum suppression +- Minor changes in the forward pass to use pytorch 1.0 features + +### Difference from RetinaFace +For the original source code, see [here](https://github.com/biubug6/Pytorch_Retinaface). + +We've done the following improvements: +- Remove gradient computation for inference (`torch.no_grad`). +- Replacing non-maximum-suppression to a [highly optimized torchvision version](https://github.com/pytorch/vision/blob/19315e313511fead3597e23075552255d07fcb2a/torchvision/ops/boxes.py#L5) + +## Inference time + +This is **very roughly** estimated on a 1024x687 image. The reported time is the average over 1000 forward passes on a single image. (With no cudnn benchmarking and no fp16 computation). + + +| | DSFDDetector | RetinaNetResNet50 | RetinaNetMobileNetV1 | +| -|-|-|-| +| CPU (Intel 2.2GHz i7) *| 17,496 ms (0.06 FPS) | 2970ms (0.33 FPS) | 270ms (3.7 FPS) | +| NVIDIA V100-32GB | 100ms (10 FPS) | | | +| NVIDIA GTX 1060 6GB | 341ms (2.9 FPS) | 76.6ms (13 FPS) | 48.2ms (20.7 FPS) | +| NVIDIA T4 16 GB | 482 ms (2.1 FPS) | 181ms (5.5 FPS) | 178ms (5.6 FPS) | + +*Done over 100 forward passes on a MacOS Mid 2014, 15-Inch. + + + +## Changelog + - September 1st 2020: added support for fp16/mixed precision inference + - September 24th 2020: added support for TensorRT. + + +## TensorRT Inference (Experimental) +You can run RetinaFace ResNet-50 with TensorRT: + +```python +from face_detection.retinaface.tensorrt_wrap import TensorRTRetinaFace + +inference_imshape =(480, 640) # Input to the CNN +input_imshape = (1080, 1920) # Input for original video source +detector = TensorRTRetinaFace(input_imshape, imshape) +boxes, landmarks, scores = detector.infer(image) + +``` + +## Citation +If you find this code useful, remember to cite the original authors: +``` +@inproceedings{li2018dsfd, + title={DSFD: Dual Shot Face Detector}, + author={Li, Jian and Wang, Yabiao and Wang, Changan and Tai, Ying and Qian, Jianjun and Yang, Jian and Wang, Chengjie and Li, Jilin and Huang, Feiyue}, + booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, + year={2019} +} + +@inproceedings{deng2019retinaface, + title={RetinaFace: Single-stage Dense Face Localisation in the Wild}, + author={Deng, Jiankang and Guo, Jia and Yuxiang, Zhou and Jinke Yu and Irene Kotsia and Zafeiriou, Stefanos}, + booktitle={arxiv}, + year={2019} + +``` + + + + +%package help +Summary: Development documents and examples for face-detection +Provides: python3-face-detection-doc +%description help +# State of the Art Face Detection in Pytorch with DSFD and RetinaFace + +This repository includes: +- A High-Performance Pytorch Implementation of the paper "[DSFD: Dual Shot Face Detector" (CVPR 2019).](http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_DSFD_Dual_Shot_Face_Detector_CVPR_2019_paper.pdf) adapted from the [original source code](https://github.com/TencentYoutuResearch/FaceDetection-DSFD). +- Lightweight single-shot face detection from the paper [RetinaFace: Single-stage Dense Face Localisation in the Wild](https://arxiv.org/abs/1905.00641) adapted from https://github.com/biubug6/Pytorch_Retinaface. + + + +**NOTE** This implementation can only be used for inference of a selection of models and all training scripts are removed. If you want to finetune any models, we recommend you to use the original source code. + +## Install + +You can install this repository with pip (requires python>=3.6); + +```bash +pip install git+https://github.com/hukkelas/DSFD-Pytorch-Inference.git +``` + +You can also install with the `setup.py` + +```bash +python3 setup.py install +``` + +## Getting started +Run +``` +python3 test.py +``` +This will look for images in the `images/` folder, and save the results in the same folder with an ending `_out.jpg` + +## Simple API +To perform detection you can simple use the following lines: + +```python +import cv2 +import face_detection +print(face_detection.available_detectors) +detector = face_detection.build_detector( + "DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3) +# BGR to RGB +im = cv2.imread("path_to_im.jpg")[:, :, ::-1] + +detections = detector.detect(im) +``` + +This will return a tensor with shape `[N, 5]`, where N is number of faces and the five elements are `[xmin, ymin, xmax, ymax, detection_confidence]` + +### Batched inference + +```python +import numpy as np +import face_detection +print(face_detection.available_detectors) +detector = face_detection.build_detector( + "DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3) +# [batch size, height, width, 3] +images_dummy = np.zeros((2, 512, 512, 3)) + +detections = detector.batched_detect(im) +``` + + +## Improvements + +### Difference from DSFD +For the original source code, see [here](https://github.com/TencentYoutuResearch/FaceDetection-DSFD). +- Removal of all unnecessary files for training / loading VGG models. +- Improve the inference time by about 30x (from ~6s to 0.2) with rough estimates using `time` (Measured on a V100-32GB GPU). + +The main improvements in inference time comes from: + +- Replacing non-maximum-suppression to a [highly optimized torchvision version](https://github.com/pytorch/vision/blob/19315e313511fead3597e23075552255d07fcb2a/torchvision/ops/boxes.py#L5) +- Refactoring `init_priors`in the [SSD model](dsfd/face_ssd.py) to cache previous prior sizes (no need to generate this per forward pass). +- Refactoring the forward pass in `Detect` in [`utils.py`](dsfd/utils.py) to perform confidence thresholding before non-maximum suppression +- Minor changes in the forward pass to use pytorch 1.0 features + +### Difference from RetinaFace +For the original source code, see [here](https://github.com/biubug6/Pytorch_Retinaface). + +We've done the following improvements: +- Remove gradient computation for inference (`torch.no_grad`). +- Replacing non-maximum-suppression to a [highly optimized torchvision version](https://github.com/pytorch/vision/blob/19315e313511fead3597e23075552255d07fcb2a/torchvision/ops/boxes.py#L5) + +## Inference time + +This is **very roughly** estimated on a 1024x687 image. The reported time is the average over 1000 forward passes on a single image. (With no cudnn benchmarking and no fp16 computation). + + +| | DSFDDetector | RetinaNetResNet50 | RetinaNetMobileNetV1 | +| -|-|-|-| +| CPU (Intel 2.2GHz i7) *| 17,496 ms (0.06 FPS) | 2970ms (0.33 FPS) | 270ms (3.7 FPS) | +| NVIDIA V100-32GB | 100ms (10 FPS) | | | +| NVIDIA GTX 1060 6GB | 341ms (2.9 FPS) | 76.6ms (13 FPS) | 48.2ms (20.7 FPS) | +| NVIDIA T4 16 GB | 482 ms (2.1 FPS) | 181ms (5.5 FPS) | 178ms (5.6 FPS) | + +*Done over 100 forward passes on a MacOS Mid 2014, 15-Inch. + + + +## Changelog + - September 1st 2020: added support for fp16/mixed precision inference + - September 24th 2020: added support for TensorRT. + + +## TensorRT Inference (Experimental) +You can run RetinaFace ResNet-50 with TensorRT: + +```python +from face_detection.retinaface.tensorrt_wrap import TensorRTRetinaFace + +inference_imshape =(480, 640) # Input to the CNN +input_imshape = (1080, 1920) # Input for original video source +detector = TensorRTRetinaFace(input_imshape, imshape) +boxes, landmarks, scores = detector.infer(image) + +``` + +## Citation +If you find this code useful, remember to cite the original authors: +``` +@inproceedings{li2018dsfd, + title={DSFD: Dual Shot Face Detector}, + author={Li, Jian and Wang, Yabiao and Wang, Changan and Tai, Ying and Qian, Jianjun and Yang, Jian and Wang, Chengjie and Li, Jilin and Huang, Feiyue}, + booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, + year={2019} +} + +@inproceedings{deng2019retinaface, + title={RetinaFace: Single-stage Dense Face Localisation in the Wild}, + author={Deng, Jiankang and Guo, Jia and Yuxiang, Zhou and Jinke Yu and Irene Kotsia and Zafeiriou, Stefanos}, + booktitle={arxiv}, + year={2019} + +``` + + + + +%prep +%autosetup -n face-detection-0.2.2 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-face-detection -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.2-1 +- Package Spec generated @@ -0,0 +1 @@ +1490398b20a627965fb098d5249a7ab5 face_detection-0.2.2.tar.gz |