1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
|
%global _empty_manifest_terminate_build 0
Name: python-fast-bert
Version: 2.0.10
Release: 1
Summary: AI Library using BERT
License: Apache2
URL: https://github.com/kaushaltrivedi/fast-bert
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ab/b3/1421b3627acb871a0d842a50765aa72f4f486548c6813338c471bd65513b/fast_bert-2.0.10.tar.gz
BuildArch: noarch
Requires: python3-matplotlib
Requires: python3-pytorch-lamb
Requires: python3-tensorboardX
Requires: python3-fastprogress
Requires: python3-scikit-learn
Requires: python3-spacy
Requires: python3-seqeval
Requires: python3-transformers
Requires: python3-pandas
Requires: python3-box
Requires: python3-more-itertools
Requires: python3-onnx
Requires: python3-onnxruntime
Requires: python3-onnxruntime-tools
%description
# Fast-Bert
[](https://github.com/deepmipt/DeepPavlov/blob/master/LICENSE)
[](https://badge.fury.io/py/fast-bert)

**New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder)**
**Supports LAMB optimizer for faster training.**
Please refer to https://arxiv.org/abs/1904.00962 for the paper on LAMB optimizer.
**Supports BERT and XLNet for both Multi-Class and Multi-Label text classification.**
Fast-Bert is the deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification.
The work on FastBert is built on solid foundations provided by the excellent [Hugging Face BERT PyTorch library](https://github.com/huggingface/pytorch-pretrained-BERT) and is inspired by [fast.ai](https://github.com/fastai/fastai) and strives to make the cutting edge deep learning technologies accessible for the vast community of machine learning practitioners.
With FastBert, you will be able to:
1. Train (more precisely fine-tune) BERT, RoBERTa and XLNet text classification models on your custom dataset.
2. Tune model hyper-parameters such as epochs, learning rate, batch size, optimiser schedule and more.
3. Save and deploy trained model for inference (including on AWS Sagemaker).
Fast-Bert will support both multi-class and multi-label text classification for the following and in due course, it will support other NLU tasks such as Named Entity Recognition, Question Answering and Custom Corpus fine-tuning.
1. **[BERT](https://github.com/google-research/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
2) **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
3) **[RoBERTa](https://arxiv.org/abs/1907.11692)** (from Facebook), a Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du et al.
4) **DistilBERT (from HuggingFace)**, released together with the blogpost [Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT](https://medium.com/huggingface/distilbert-8cf3380435b5) by Victor Sanh, Lysandre Debut and Thomas Wolf.
## Installation
This repo is tested on Python 3.6+.
### With pip
PyTorch-Transformers can be installed by pip as follows:
```bash
pip install fast-bert
```
### From source
Clone the repository and run:
```bash
pip install [--editable] .
```
or
```bash
pip install git+https://github.com/kaushaltrivedi/fast-bert.git
```
You will also need to install NVIDIA Apex.
```bash
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```
## Usage
## Text Classification
### 1. Create a DataBunch object
The databunch object takes training, validation and test csv files and converts the data into internal representation for BERT, RoBERTa, DistilBERT or XLNet. The object also instantiates the correct data-loaders based on device profile and batch_size and max_sequence_length.
```python
from fast_bert.data_cls import BertDataBunch
databunch = BertDataBunch(DATA_PATH, LABEL_PATH,
tokenizer='bert-base-uncased',
train_file='train.csv',
val_file='val.csv',
label_file='labels.csv',
text_col='text',
label_col='label',
batch_size_per_gpu=16,
max_seq_length=512,
multi_gpu=True,
multi_label=False,
model_type='bert')
```
#### File format for train.csv and val.csv
| index | text | label |
| ----- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----- |
| 0 | Looking through the other comments, I'm amazed that there aren't any warnings to potential viewers of what they have to look forward to when renting this garbage. First off, I rented this thing with the understanding that it was a competently rendered Indiana Jones knock-off. | neg |
| 1 | I've watched the first 17 episodes and this series is simply amazing! I haven't been this interested in an anime series since Neon Genesis Evangelion. This series is actually based off an h-game, which I'm not sure if it's been done before or not, I haven't played the game, but from what I've heard it follows it very well | pos |
| 2 | his movie is nothing short of a dark, gritty masterpiece. I may be bias, as the Apartheid era is an area I've always felt for. | pos |
In case the column names are different than the usual text and labels, you will have to provide those names in the databunch text_col and label_col parameters.
**labels.csv** will contain a list of all unique labels. In this case the file will contain:
```csv
pos
neg
```
For multi-label classification, **labels.csv** will contain all possible labels:
```
toxic
severe_toxic
obscene
threat
insult
identity_hate
```
The file **train.csv** will then contain one column for each label, with each column value being either 0 or 1. Don't forget to change `multi_label=True` for multi-label classification in `BertDataBunch`.
| id | text | toxic | severe_toxic | obscene | threat | insult | identity_hate |
| --- | -------------------------------------------------------------------------- | ----- | ------------ | ------- | ------ | ------ | ------------- |
| 0 | Why the edits made under my username Hardcore Metallica Fan were reverted? | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | I will mess you up | 1 | 0 | 0 | 1 | 0 | 0 |
label_col will be a list of label column names. In this case it will be:
```python
['toxic','severe_toxic','obscene','threat','insult','identity_hate']
```
#### Tokenizer
You can either create a tokenizer object and pass it to DataBunch or you can pass the model name as tokenizer and DataBunch will automatically download and instantiate an appropriate tokenizer object.
For example for using XLNet base cased model, set tokenizer parameter to 'xlnet-base-cased'. DataBunch will automatically download and instantiate XLNetTokenizer with the vocabulary for xlnet-base-cased model.
#### Model Type
Fast-Bert supports XLNet, RoBERTa and BERT based classification models. Set model type parameter value to **'bert'**, **roberta** or **'xlnet'** in order to initiate an appropriate databunch object.
### 2. Create a Learner Object
BertLearner is the ‘learner’ object that holds everything together. It encapsulates the key logic for the lifecycle of the model such as training, validation and inference.
The learner object will take the databunch created earlier as as input alongwith some of the other parameters such as location for one of the pretrained models, FP16 training, multi_gpu and multi_label options.
The learner class contains the logic for training loop, validation loop, optimiser strategies and key metrics calculation. This help the developers focus on their custom use-cases without worrying about these repetitive activities.
At the same time the learner object is flexible enough to be customised either via using flexible parameters or by creating a subclass of BertLearner and redefining relevant methods.
```python
from fast_bert.learner_cls import BertLearner
from fast_bert.metrics import accuracy
import logging
logger = logging.getLogger()
device_cuda = torch.device("cuda")
metrics = [{'name': 'accuracy', 'function': accuracy}]
learner = BertLearner.from_pretrained_model(
databunch,
pretrained_path='bert-base-uncased',
metrics=metrics,
device=device_cuda,
logger=logger,
output_dir=OUTPUT_DIR,
finetuned_wgts_path=None,
warmup_steps=500,
multi_gpu=True,
is_fp16=True,
multi_label=False,
logging_steps=50)
```
| parameter | description |
| ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| databunch | Databunch object created earlier |
| pretrained_path | Directory for the location of the pretrained model files or the name of one of the pretrained models i.e. bert-base-uncased, xlnet-large-cased, etc |
| metrics | List of metrics functions that you want the model to calculate on the validation set, e.g. accuracy, beta, etc |
| device | torch.device of type _cuda_ or _cpu_ |
| logger | logger object |
| output_dir | Directory for model to save trained artefacts, tokenizer vocabulary and tensorboard files |
| finetuned_wgts_path | provide the location for fine-tuned language model (experimental feature) |
| warmup_steps | number of training warms steps for the scheduler |
| multi_gpu | multiple GPUs available e.g. if running on AWS p3.8xlarge instance |
| is_fp16 | FP16 training |
| multi_label | multilabel classification |
| logging_steps | number of steps between each tensorboard metrics calculation. Set it to 0 to disable tensor flow logging. Keeping this value too low will lower the training speed as model will be evaluated each time the metrics are logged |
### 3. Find the optimal learning rate
The learning rate is one of the most important hyperparameters for model training. We have incorporated the learining rate finder that was proposed by Leslie Smith and then built into the fastai library.
```python
learner.lr_find(start_lr=1e-5,optimizer_type='lamb')
```
The code is heavily borrowed from David Silva's [pytorch-lr-finder library](https://github.com/davidtvs/pytorch-lr-finder).

### 4. Train the model
```python
learner.fit(epochs=6,
lr=6e-5,
validate=True, # Evaluate the model after each epoch
schedule_type="warmup_cosine",
optimizer_type="lamb")
```
Fast-Bert now supports LAMB optmizer. Due to the speed of training, we have set LAMB as the default optimizer. You can switch back to AdamW by setting optimizer_type to 'adamw'.
### 5. Save trained model artifacts
```python
learner.save_model()
```
Model artefacts will be persisted in the output_dir/'model_out' path provided to the learner object. Following files will be persisted:
| File name | description |
| ----------------------- | ------------------------------------------------ |
| pytorch_model.bin | trained model weights |
| spiece.model | sentence tokenizer vocabulary (for xlnet models) |
| vocab.txt | workpiece tokenizer vocabulary (for bert models) |
| special_tokens_map.json | special tokens mappings |
| config.json | model config |
| added_tokens.json | list of new tokens |
As the model artefacts are all stored in the same folder, you will be able to instantiate the learner object to run inference by pointing pretrained_path to this location.
### 6. Model Inference
If you already have a Learner object with trained model instantiated, just call predict_batch method on the learner object with the list of text data:
```python
texts = ['I really love the Netflix original movies',
'this movie is not worth watching']
predictions = learner.predict_batch(texts)
```
If you have persistent trained model and just want to run inference logic on that trained model, use the second approach, i.e. the predictor object.
```python
from fast_bert.prediction import BertClassificationPredictor
MODEL_PATH = OUTPUT_DIR/'model_out'
predictor = BertClassificationPredictor(
model_path=MODEL_PATH,
label_path=LABEL_PATH, # location for labels.csv file
multi_label=False,
model_type='xlnet',
do_lower_case=False,
device=None) # set custom torch.device, defaults to cuda if available
# Single prediction
single_prediction = predictor.predict("just get me result for this text")
# Batch predictions
texts = [
"this is the first text",
"this is the second text"
]
multiple_predictions = predictor.predict_batch(texts)
```
## Language Model Fine-tuning
A useful approach to use BERT based models on custom datasets is to first finetune the language model task for the custom dataset, an apporach followed by fast.ai's ULMFit. The idea is to start with a pre-trained model and further train the model on the raw text of the custom dataset. We will use the masked LM task to finetune the language model.
This section will describe the usage of FastBert to finetune the language model.
### 1. Import the necessary libraries
The necessary objects are stored in the files with '\_lm' suffix.
```python
# Language model Databunch
from fast_bert.data_lm import BertLMDataBunch
# Language model learner
from fast_bert.learner_lm import BertLMLearner
from pathlib import Path
from box import Box
```
### 2. Define parameters and setup datapaths
```python
# Box is a nice wrapper to create an object from a json dict
args = Box({
"seed": 42,
"task_name": 'imdb_reviews_lm',
"model_name": 'roberta-base',
"model_type": 'roberta',
"train_batch_size": 16,
"learning_rate": 4e-5,
"num_train_epochs": 20,
"fp16": True,
"fp16_opt_level": "O2",
"warmup_steps": 1000,
"logging_steps": 0,
"max_seq_length": 512,
"multi_gpu": True if torch.cuda.device_count() > 1 else False
})
DATA_PATH = Path('../lm_data/')
LOG_PATH = Path('../logs')
MODEL_PATH = Path('../lm_model_{}/'.format(args.model_type))
DATA_PATH.mkdir(exist_ok=True)
MODEL_PATH.mkdir(exist_ok=True)
LOG_PATH.mkdir(exist_ok=True)
```
### 3. Create DataBunch object
The BertLMDataBunch class contains a static method 'from_raw_corpus' that will take the list of raw texts and create DataBunch for the language model learner.
The method will at first preprocess the text list by removing html tags, extra spaces and more and then create files `lm_train.txt` and `lm_val.txt`. These files will be used for training and evaluating the language model finetuning task.
The next step will be to featurize the texts. The text will be tokenized, numericalized and split into blocks on 512 tokens (including special tokens).
```python
databunch_lm = BertLMDataBunch.from_raw_corpus(
data_dir=DATA_PATH,
text_list=texts,
tokenizer=args.model_name,
batch_size_per_gpu=args.train_batch_size,
max_seq_length=args.max_seq_length,
multi_gpu=args.multi_gpu,
model_type=args.model_type,
logger=logger)
```
As this step can take some time based on the size of your custom dataset's text, the featurized data will be cached in pickled files in the data_dir/lm_cache folder.
The next time, instead of using from_raw_corpus method, you may want to directly instantiate the DataBunch object as shown below:
```python
databunch_lm = BertLMDataBunch(
data_dir=DATA_PATH,
tokenizer=args.model_name,
batch_size_per_gpu=args.train_batch_size,
max_seq_length=args.max_seq_length,
multi_gpu=args.multi_gpu,
model_type=args.model_type,
logger=logger)
```
### 4. Create the LM Learner object
BertLearner is the ‘learner’ object that holds everything together. It encapsulates the key logic for the lifecycle of the model such as training, validation and inference.
The learner object will take the databunch created earlier as as input alongwith some of the other parameters such as location for one of the pretrained models, FP16 training, multi_gpu and multi_label options.
The learner class contains the logic for training loop, validation loop, and optimizer strategies. This help the developers focus on their custom use-cases without worrying about these repetitive activities.
At the same time the learner object is flexible enough to be customized either via using flexible parameters or by creating a subclass of BertLearner and redefining relevant methods.
```python
learner = BertLMLearner.from_pretrained_model(
dataBunch=databunch_lm,
pretrained_path=args.model_name,
output_dir=MODEL_PATH,
metrics=[],
device=device,
logger=logger,
multi_gpu=args.multi_gpu,
logging_steps=args.logging_steps,
fp16_opt_level=args.fp16_opt_level)
```
### 5. Train the model
```python
learner.fit(epochs=6,
lr=6e-5,
validate=True, # Evaluate the model after each epoch
schedule_type="warmup_cosine",
optimizer_type="lamb")
```
Fast-Bert now supports LAMB optmizer. Due to the speed of training, we have set LAMB as the default optimizer. You can switch back to AdamW by setting optimizer_type to 'adamw'.
### 6. Save trained model artifacts
```python
learner.save_model()
```
Model artefacts will be persisted in the output_dir/'model_out' path provided to the learner object. Following files will be persisted:
| File name | description |
| ----------------------- | ------------------------------------------------ |
| pytorch_model.bin | trained model weights |
| spiece.model | sentence tokenizer vocabulary (for xlnet models) |
| vocab.txt | workpiece tokenizer vocabulary (for bert models) |
| special_tokens_map.json | special tokens mappings |
| config.json | model config |
| added_tokens.json | list of new tokens |
The pytorch_model.bin contains the finetuned weights and you can point the classification task learner object to this file throgh the `finetuned_wgts_path` parameter.
## Amazon Sagemaker Support
The purpose of this library is to let you train and deploy production grade models. As transformer models require expensive GPUs to train, I have added support for training and deploying model on AWS SageMaker.
The repository contains the docker image and code for building BERT based classification models in Amazon SageMaker.
Please refer to my blog [Train and Deploy the Mighty BERT based NLP models using FastBert and Amazon SageMaker](https://towardsdatascience.com/train-and-deploy-mighty-transformer-nlp-models-using-fastbert-and-aws-sagemaker-cc4303c51cf3) that provides detailed explanation on using SageMaker with FastBert.
## Citation
Please include a mention of [this library](https://github.com/kaushaltrivedi/fast-bert) and HuggingFace [pytorch-transformers](https://github.com/huggingface/pytorch-transformers) library and a link to the present repository if you use this work in a published or open-source project.
Also include my blogs on this topic:
- [Introducing FastBert — A simple Deep Learning library for BERT Models](https://medium.com/huggingface/introducing-fastbert-a-simple-deep-learning-library-for-bert-models-89ff763ad384)
- [Multi-label Text Classification using BERT – The Mighty Transformer](https://medium.com/huggingface/multi-label-text-classification-using-bert-the-mighty-transformer-69714fa3fb3d)
- [Train and Deploy the Mighty BERT based NLP models using FastBert and Amazon SageMaker](https://towardsdatascience.com/train-and-deploy-mighty-transformer-nlp-models-using-fastbert-and-aws-sagemaker-cc4303c51cf3)
%package -n python3-fast-bert
Summary: AI Library using BERT
Provides: python-fast-bert
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-fast-bert
# Fast-Bert
[](https://github.com/deepmipt/DeepPavlov/blob/master/LICENSE)
[](https://badge.fury.io/py/fast-bert)

**New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder)**
**Supports LAMB optimizer for faster training.**
Please refer to https://arxiv.org/abs/1904.00962 for the paper on LAMB optimizer.
**Supports BERT and XLNet for both Multi-Class and Multi-Label text classification.**
Fast-Bert is the deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification.
The work on FastBert is built on solid foundations provided by the excellent [Hugging Face BERT PyTorch library](https://github.com/huggingface/pytorch-pretrained-BERT) and is inspired by [fast.ai](https://github.com/fastai/fastai) and strives to make the cutting edge deep learning technologies accessible for the vast community of machine learning practitioners.
With FastBert, you will be able to:
1. Train (more precisely fine-tune) BERT, RoBERTa and XLNet text classification models on your custom dataset.
2. Tune model hyper-parameters such as epochs, learning rate, batch size, optimiser schedule and more.
3. Save and deploy trained model for inference (including on AWS Sagemaker).
Fast-Bert will support both multi-class and multi-label text classification for the following and in due course, it will support other NLU tasks such as Named Entity Recognition, Question Answering and Custom Corpus fine-tuning.
1. **[BERT](https://github.com/google-research/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
2) **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
3) **[RoBERTa](https://arxiv.org/abs/1907.11692)** (from Facebook), a Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du et al.
4) **DistilBERT (from HuggingFace)**, released together with the blogpost [Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT](https://medium.com/huggingface/distilbert-8cf3380435b5) by Victor Sanh, Lysandre Debut and Thomas Wolf.
## Installation
This repo is tested on Python 3.6+.
### With pip
PyTorch-Transformers can be installed by pip as follows:
```bash
pip install fast-bert
```
### From source
Clone the repository and run:
```bash
pip install [--editable] .
```
or
```bash
pip install git+https://github.com/kaushaltrivedi/fast-bert.git
```
You will also need to install NVIDIA Apex.
```bash
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```
## Usage
## Text Classification
### 1. Create a DataBunch object
The databunch object takes training, validation and test csv files and converts the data into internal representation for BERT, RoBERTa, DistilBERT or XLNet. The object also instantiates the correct data-loaders based on device profile and batch_size and max_sequence_length.
```python
from fast_bert.data_cls import BertDataBunch
databunch = BertDataBunch(DATA_PATH, LABEL_PATH,
tokenizer='bert-base-uncased',
train_file='train.csv',
val_file='val.csv',
label_file='labels.csv',
text_col='text',
label_col='label',
batch_size_per_gpu=16,
max_seq_length=512,
multi_gpu=True,
multi_label=False,
model_type='bert')
```
#### File format for train.csv and val.csv
| index | text | label |
| ----- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----- |
| 0 | Looking through the other comments, I'm amazed that there aren't any warnings to potential viewers of what they have to look forward to when renting this garbage. First off, I rented this thing with the understanding that it was a competently rendered Indiana Jones knock-off. | neg |
| 1 | I've watched the first 17 episodes and this series is simply amazing! I haven't been this interested in an anime series since Neon Genesis Evangelion. This series is actually based off an h-game, which I'm not sure if it's been done before or not, I haven't played the game, but from what I've heard it follows it very well | pos |
| 2 | his movie is nothing short of a dark, gritty masterpiece. I may be bias, as the Apartheid era is an area I've always felt for. | pos |
In case the column names are different than the usual text and labels, you will have to provide those names in the databunch text_col and label_col parameters.
**labels.csv** will contain a list of all unique labels. In this case the file will contain:
```csv
pos
neg
```
For multi-label classification, **labels.csv** will contain all possible labels:
```
toxic
severe_toxic
obscene
threat
insult
identity_hate
```
The file **train.csv** will then contain one column for each label, with each column value being either 0 or 1. Don't forget to change `multi_label=True` for multi-label classification in `BertDataBunch`.
| id | text | toxic | severe_toxic | obscene | threat | insult | identity_hate |
| --- | -------------------------------------------------------------------------- | ----- | ------------ | ------- | ------ | ------ | ------------- |
| 0 | Why the edits made under my username Hardcore Metallica Fan were reverted? | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | I will mess you up | 1 | 0 | 0 | 1 | 0 | 0 |
label_col will be a list of label column names. In this case it will be:
```python
['toxic','severe_toxic','obscene','threat','insult','identity_hate']
```
#### Tokenizer
You can either create a tokenizer object and pass it to DataBunch or you can pass the model name as tokenizer and DataBunch will automatically download and instantiate an appropriate tokenizer object.
For example for using XLNet base cased model, set tokenizer parameter to 'xlnet-base-cased'. DataBunch will automatically download and instantiate XLNetTokenizer with the vocabulary for xlnet-base-cased model.
#### Model Type
Fast-Bert supports XLNet, RoBERTa and BERT based classification models. Set model type parameter value to **'bert'**, **roberta** or **'xlnet'** in order to initiate an appropriate databunch object.
### 2. Create a Learner Object
BertLearner is the ‘learner’ object that holds everything together. It encapsulates the key logic for the lifecycle of the model such as training, validation and inference.
The learner object will take the databunch created earlier as as input alongwith some of the other parameters such as location for one of the pretrained models, FP16 training, multi_gpu and multi_label options.
The learner class contains the logic for training loop, validation loop, optimiser strategies and key metrics calculation. This help the developers focus on their custom use-cases without worrying about these repetitive activities.
At the same time the learner object is flexible enough to be customised either via using flexible parameters or by creating a subclass of BertLearner and redefining relevant methods.
```python
from fast_bert.learner_cls import BertLearner
from fast_bert.metrics import accuracy
import logging
logger = logging.getLogger()
device_cuda = torch.device("cuda")
metrics = [{'name': 'accuracy', 'function': accuracy}]
learner = BertLearner.from_pretrained_model(
databunch,
pretrained_path='bert-base-uncased',
metrics=metrics,
device=device_cuda,
logger=logger,
output_dir=OUTPUT_DIR,
finetuned_wgts_path=None,
warmup_steps=500,
multi_gpu=True,
is_fp16=True,
multi_label=False,
logging_steps=50)
```
| parameter | description |
| ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| databunch | Databunch object created earlier |
| pretrained_path | Directory for the location of the pretrained model files or the name of one of the pretrained models i.e. bert-base-uncased, xlnet-large-cased, etc |
| metrics | List of metrics functions that you want the model to calculate on the validation set, e.g. accuracy, beta, etc |
| device | torch.device of type _cuda_ or _cpu_ |
| logger | logger object |
| output_dir | Directory for model to save trained artefacts, tokenizer vocabulary and tensorboard files |
| finetuned_wgts_path | provide the location for fine-tuned language model (experimental feature) |
| warmup_steps | number of training warms steps for the scheduler |
| multi_gpu | multiple GPUs available e.g. if running on AWS p3.8xlarge instance |
| is_fp16 | FP16 training |
| multi_label | multilabel classification |
| logging_steps | number of steps between each tensorboard metrics calculation. Set it to 0 to disable tensor flow logging. Keeping this value too low will lower the training speed as model will be evaluated each time the metrics are logged |
### 3. Find the optimal learning rate
The learning rate is one of the most important hyperparameters for model training. We have incorporated the learining rate finder that was proposed by Leslie Smith and then built into the fastai library.
```python
learner.lr_find(start_lr=1e-5,optimizer_type='lamb')
```
The code is heavily borrowed from David Silva's [pytorch-lr-finder library](https://github.com/davidtvs/pytorch-lr-finder).

### 4. Train the model
```python
learner.fit(epochs=6,
lr=6e-5,
validate=True, # Evaluate the model after each epoch
schedule_type="warmup_cosine",
optimizer_type="lamb")
```
Fast-Bert now supports LAMB optmizer. Due to the speed of training, we have set LAMB as the default optimizer. You can switch back to AdamW by setting optimizer_type to 'adamw'.
### 5. Save trained model artifacts
```python
learner.save_model()
```
Model artefacts will be persisted in the output_dir/'model_out' path provided to the learner object. Following files will be persisted:
| File name | description |
| ----------------------- | ------------------------------------------------ |
| pytorch_model.bin | trained model weights |
| spiece.model | sentence tokenizer vocabulary (for xlnet models) |
| vocab.txt | workpiece tokenizer vocabulary (for bert models) |
| special_tokens_map.json | special tokens mappings |
| config.json | model config |
| added_tokens.json | list of new tokens |
As the model artefacts are all stored in the same folder, you will be able to instantiate the learner object to run inference by pointing pretrained_path to this location.
### 6. Model Inference
If you already have a Learner object with trained model instantiated, just call predict_batch method on the learner object with the list of text data:
```python
texts = ['I really love the Netflix original movies',
'this movie is not worth watching']
predictions = learner.predict_batch(texts)
```
If you have persistent trained model and just want to run inference logic on that trained model, use the second approach, i.e. the predictor object.
```python
from fast_bert.prediction import BertClassificationPredictor
MODEL_PATH = OUTPUT_DIR/'model_out'
predictor = BertClassificationPredictor(
model_path=MODEL_PATH,
label_path=LABEL_PATH, # location for labels.csv file
multi_label=False,
model_type='xlnet',
do_lower_case=False,
device=None) # set custom torch.device, defaults to cuda if available
# Single prediction
single_prediction = predictor.predict("just get me result for this text")
# Batch predictions
texts = [
"this is the first text",
"this is the second text"
]
multiple_predictions = predictor.predict_batch(texts)
```
## Language Model Fine-tuning
A useful approach to use BERT based models on custom datasets is to first finetune the language model task for the custom dataset, an apporach followed by fast.ai's ULMFit. The idea is to start with a pre-trained model and further train the model on the raw text of the custom dataset. We will use the masked LM task to finetune the language model.
This section will describe the usage of FastBert to finetune the language model.
### 1. Import the necessary libraries
The necessary objects are stored in the files with '\_lm' suffix.
```python
# Language model Databunch
from fast_bert.data_lm import BertLMDataBunch
# Language model learner
from fast_bert.learner_lm import BertLMLearner
from pathlib import Path
from box import Box
```
### 2. Define parameters and setup datapaths
```python
# Box is a nice wrapper to create an object from a json dict
args = Box({
"seed": 42,
"task_name": 'imdb_reviews_lm',
"model_name": 'roberta-base',
"model_type": 'roberta',
"train_batch_size": 16,
"learning_rate": 4e-5,
"num_train_epochs": 20,
"fp16": True,
"fp16_opt_level": "O2",
"warmup_steps": 1000,
"logging_steps": 0,
"max_seq_length": 512,
"multi_gpu": True if torch.cuda.device_count() > 1 else False
})
DATA_PATH = Path('../lm_data/')
LOG_PATH = Path('../logs')
MODEL_PATH = Path('../lm_model_{}/'.format(args.model_type))
DATA_PATH.mkdir(exist_ok=True)
MODEL_PATH.mkdir(exist_ok=True)
LOG_PATH.mkdir(exist_ok=True)
```
### 3. Create DataBunch object
The BertLMDataBunch class contains a static method 'from_raw_corpus' that will take the list of raw texts and create DataBunch for the language model learner.
The method will at first preprocess the text list by removing html tags, extra spaces and more and then create files `lm_train.txt` and `lm_val.txt`. These files will be used for training and evaluating the language model finetuning task.
The next step will be to featurize the texts. The text will be tokenized, numericalized and split into blocks on 512 tokens (including special tokens).
```python
databunch_lm = BertLMDataBunch.from_raw_corpus(
data_dir=DATA_PATH,
text_list=texts,
tokenizer=args.model_name,
batch_size_per_gpu=args.train_batch_size,
max_seq_length=args.max_seq_length,
multi_gpu=args.multi_gpu,
model_type=args.model_type,
logger=logger)
```
As this step can take some time based on the size of your custom dataset's text, the featurized data will be cached in pickled files in the data_dir/lm_cache folder.
The next time, instead of using from_raw_corpus method, you may want to directly instantiate the DataBunch object as shown below:
```python
databunch_lm = BertLMDataBunch(
data_dir=DATA_PATH,
tokenizer=args.model_name,
batch_size_per_gpu=args.train_batch_size,
max_seq_length=args.max_seq_length,
multi_gpu=args.multi_gpu,
model_type=args.model_type,
logger=logger)
```
### 4. Create the LM Learner object
BertLearner is the ‘learner’ object that holds everything together. It encapsulates the key logic for the lifecycle of the model such as training, validation and inference.
The learner object will take the databunch created earlier as as input alongwith some of the other parameters such as location for one of the pretrained models, FP16 training, multi_gpu and multi_label options.
The learner class contains the logic for training loop, validation loop, and optimizer strategies. This help the developers focus on their custom use-cases without worrying about these repetitive activities.
At the same time the learner object is flexible enough to be customized either via using flexible parameters or by creating a subclass of BertLearner and redefining relevant methods.
```python
learner = BertLMLearner.from_pretrained_model(
dataBunch=databunch_lm,
pretrained_path=args.model_name,
output_dir=MODEL_PATH,
metrics=[],
device=device,
logger=logger,
multi_gpu=args.multi_gpu,
logging_steps=args.logging_steps,
fp16_opt_level=args.fp16_opt_level)
```
### 5. Train the model
```python
learner.fit(epochs=6,
lr=6e-5,
validate=True, # Evaluate the model after each epoch
schedule_type="warmup_cosine",
optimizer_type="lamb")
```
Fast-Bert now supports LAMB optmizer. Due to the speed of training, we have set LAMB as the default optimizer. You can switch back to AdamW by setting optimizer_type to 'adamw'.
### 6. Save trained model artifacts
```python
learner.save_model()
```
Model artefacts will be persisted in the output_dir/'model_out' path provided to the learner object. Following files will be persisted:
| File name | description |
| ----------------------- | ------------------------------------------------ |
| pytorch_model.bin | trained model weights |
| spiece.model | sentence tokenizer vocabulary (for xlnet models) |
| vocab.txt | workpiece tokenizer vocabulary (for bert models) |
| special_tokens_map.json | special tokens mappings |
| config.json | model config |
| added_tokens.json | list of new tokens |
The pytorch_model.bin contains the finetuned weights and you can point the classification task learner object to this file throgh the `finetuned_wgts_path` parameter.
## Amazon Sagemaker Support
The purpose of this library is to let you train and deploy production grade models. As transformer models require expensive GPUs to train, I have added support for training and deploying model on AWS SageMaker.
The repository contains the docker image and code for building BERT based classification models in Amazon SageMaker.
Please refer to my blog [Train and Deploy the Mighty BERT based NLP models using FastBert and Amazon SageMaker](https://towardsdatascience.com/train-and-deploy-mighty-transformer-nlp-models-using-fastbert-and-aws-sagemaker-cc4303c51cf3) that provides detailed explanation on using SageMaker with FastBert.
## Citation
Please include a mention of [this library](https://github.com/kaushaltrivedi/fast-bert) and HuggingFace [pytorch-transformers](https://github.com/huggingface/pytorch-transformers) library and a link to the present repository if you use this work in a published or open-source project.
Also include my blogs on this topic:
- [Introducing FastBert — A simple Deep Learning library for BERT Models](https://medium.com/huggingface/introducing-fastbert-a-simple-deep-learning-library-for-bert-models-89ff763ad384)
- [Multi-label Text Classification using BERT – The Mighty Transformer](https://medium.com/huggingface/multi-label-text-classification-using-bert-the-mighty-transformer-69714fa3fb3d)
- [Train and Deploy the Mighty BERT based NLP models using FastBert and Amazon SageMaker](https://towardsdatascience.com/train-and-deploy-mighty-transformer-nlp-models-using-fastbert-and-aws-sagemaker-cc4303c51cf3)
%package help
Summary: Development documents and examples for fast-bert
Provides: python3-fast-bert-doc
%description help
# Fast-Bert
[](https://github.com/deepmipt/DeepPavlov/blob/master/LICENSE)
[](https://badge.fury.io/py/fast-bert)

**New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder)**
**Supports LAMB optimizer for faster training.**
Please refer to https://arxiv.org/abs/1904.00962 for the paper on LAMB optimizer.
**Supports BERT and XLNet for both Multi-Class and Multi-Label text classification.**
Fast-Bert is the deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification.
The work on FastBert is built on solid foundations provided by the excellent [Hugging Face BERT PyTorch library](https://github.com/huggingface/pytorch-pretrained-BERT) and is inspired by [fast.ai](https://github.com/fastai/fastai) and strives to make the cutting edge deep learning technologies accessible for the vast community of machine learning practitioners.
With FastBert, you will be able to:
1. Train (more precisely fine-tune) BERT, RoBERTa and XLNet text classification models on your custom dataset.
2. Tune model hyper-parameters such as epochs, learning rate, batch size, optimiser schedule and more.
3. Save and deploy trained model for inference (including on AWS Sagemaker).
Fast-Bert will support both multi-class and multi-label text classification for the following and in due course, it will support other NLU tasks such as Named Entity Recognition, Question Answering and Custom Corpus fine-tuning.
1. **[BERT](https://github.com/google-research/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
2) **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
3) **[RoBERTa](https://arxiv.org/abs/1907.11692)** (from Facebook), a Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du et al.
4) **DistilBERT (from HuggingFace)**, released together with the blogpost [Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT](https://medium.com/huggingface/distilbert-8cf3380435b5) by Victor Sanh, Lysandre Debut and Thomas Wolf.
## Installation
This repo is tested on Python 3.6+.
### With pip
PyTorch-Transformers can be installed by pip as follows:
```bash
pip install fast-bert
```
### From source
Clone the repository and run:
```bash
pip install [--editable] .
```
or
```bash
pip install git+https://github.com/kaushaltrivedi/fast-bert.git
```
You will also need to install NVIDIA Apex.
```bash
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```
## Usage
## Text Classification
### 1. Create a DataBunch object
The databunch object takes training, validation and test csv files and converts the data into internal representation for BERT, RoBERTa, DistilBERT or XLNet. The object also instantiates the correct data-loaders based on device profile and batch_size and max_sequence_length.
```python
from fast_bert.data_cls import BertDataBunch
databunch = BertDataBunch(DATA_PATH, LABEL_PATH,
tokenizer='bert-base-uncased',
train_file='train.csv',
val_file='val.csv',
label_file='labels.csv',
text_col='text',
label_col='label',
batch_size_per_gpu=16,
max_seq_length=512,
multi_gpu=True,
multi_label=False,
model_type='bert')
```
#### File format for train.csv and val.csv
| index | text | label |
| ----- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----- |
| 0 | Looking through the other comments, I'm amazed that there aren't any warnings to potential viewers of what they have to look forward to when renting this garbage. First off, I rented this thing with the understanding that it was a competently rendered Indiana Jones knock-off. | neg |
| 1 | I've watched the first 17 episodes and this series is simply amazing! I haven't been this interested in an anime series since Neon Genesis Evangelion. This series is actually based off an h-game, which I'm not sure if it's been done before or not, I haven't played the game, but from what I've heard it follows it very well | pos |
| 2 | his movie is nothing short of a dark, gritty masterpiece. I may be bias, as the Apartheid era is an area I've always felt for. | pos |
In case the column names are different than the usual text and labels, you will have to provide those names in the databunch text_col and label_col parameters.
**labels.csv** will contain a list of all unique labels. In this case the file will contain:
```csv
pos
neg
```
For multi-label classification, **labels.csv** will contain all possible labels:
```
toxic
severe_toxic
obscene
threat
insult
identity_hate
```
The file **train.csv** will then contain one column for each label, with each column value being either 0 or 1. Don't forget to change `multi_label=True` for multi-label classification in `BertDataBunch`.
| id | text | toxic | severe_toxic | obscene | threat | insult | identity_hate |
| --- | -------------------------------------------------------------------------- | ----- | ------------ | ------- | ------ | ------ | ------------- |
| 0 | Why the edits made under my username Hardcore Metallica Fan were reverted? | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | I will mess you up | 1 | 0 | 0 | 1 | 0 | 0 |
label_col will be a list of label column names. In this case it will be:
```python
['toxic','severe_toxic','obscene','threat','insult','identity_hate']
```
#### Tokenizer
You can either create a tokenizer object and pass it to DataBunch or you can pass the model name as tokenizer and DataBunch will automatically download and instantiate an appropriate tokenizer object.
For example for using XLNet base cased model, set tokenizer parameter to 'xlnet-base-cased'. DataBunch will automatically download and instantiate XLNetTokenizer with the vocabulary for xlnet-base-cased model.
#### Model Type
Fast-Bert supports XLNet, RoBERTa and BERT based classification models. Set model type parameter value to **'bert'**, **roberta** or **'xlnet'** in order to initiate an appropriate databunch object.
### 2. Create a Learner Object
BertLearner is the ‘learner’ object that holds everything together. It encapsulates the key logic for the lifecycle of the model such as training, validation and inference.
The learner object will take the databunch created earlier as as input alongwith some of the other parameters such as location for one of the pretrained models, FP16 training, multi_gpu and multi_label options.
The learner class contains the logic for training loop, validation loop, optimiser strategies and key metrics calculation. This help the developers focus on their custom use-cases without worrying about these repetitive activities.
At the same time the learner object is flexible enough to be customised either via using flexible parameters or by creating a subclass of BertLearner and redefining relevant methods.
```python
from fast_bert.learner_cls import BertLearner
from fast_bert.metrics import accuracy
import logging
logger = logging.getLogger()
device_cuda = torch.device("cuda")
metrics = [{'name': 'accuracy', 'function': accuracy}]
learner = BertLearner.from_pretrained_model(
databunch,
pretrained_path='bert-base-uncased',
metrics=metrics,
device=device_cuda,
logger=logger,
output_dir=OUTPUT_DIR,
finetuned_wgts_path=None,
warmup_steps=500,
multi_gpu=True,
is_fp16=True,
multi_label=False,
logging_steps=50)
```
| parameter | description |
| ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| databunch | Databunch object created earlier |
| pretrained_path | Directory for the location of the pretrained model files or the name of one of the pretrained models i.e. bert-base-uncased, xlnet-large-cased, etc |
| metrics | List of metrics functions that you want the model to calculate on the validation set, e.g. accuracy, beta, etc |
| device | torch.device of type _cuda_ or _cpu_ |
| logger | logger object |
| output_dir | Directory for model to save trained artefacts, tokenizer vocabulary and tensorboard files |
| finetuned_wgts_path | provide the location for fine-tuned language model (experimental feature) |
| warmup_steps | number of training warms steps for the scheduler |
| multi_gpu | multiple GPUs available e.g. if running on AWS p3.8xlarge instance |
| is_fp16 | FP16 training |
| multi_label | multilabel classification |
| logging_steps | number of steps between each tensorboard metrics calculation. Set it to 0 to disable tensor flow logging. Keeping this value too low will lower the training speed as model will be evaluated each time the metrics are logged |
### 3. Find the optimal learning rate
The learning rate is one of the most important hyperparameters for model training. We have incorporated the learining rate finder that was proposed by Leslie Smith and then built into the fastai library.
```python
learner.lr_find(start_lr=1e-5,optimizer_type='lamb')
```
The code is heavily borrowed from David Silva's [pytorch-lr-finder library](https://github.com/davidtvs/pytorch-lr-finder).

### 4. Train the model
```python
learner.fit(epochs=6,
lr=6e-5,
validate=True, # Evaluate the model after each epoch
schedule_type="warmup_cosine",
optimizer_type="lamb")
```
Fast-Bert now supports LAMB optmizer. Due to the speed of training, we have set LAMB as the default optimizer. You can switch back to AdamW by setting optimizer_type to 'adamw'.
### 5. Save trained model artifacts
```python
learner.save_model()
```
Model artefacts will be persisted in the output_dir/'model_out' path provided to the learner object. Following files will be persisted:
| File name | description |
| ----------------------- | ------------------------------------------------ |
| pytorch_model.bin | trained model weights |
| spiece.model | sentence tokenizer vocabulary (for xlnet models) |
| vocab.txt | workpiece tokenizer vocabulary (for bert models) |
| special_tokens_map.json | special tokens mappings |
| config.json | model config |
| added_tokens.json | list of new tokens |
As the model artefacts are all stored in the same folder, you will be able to instantiate the learner object to run inference by pointing pretrained_path to this location.
### 6. Model Inference
If you already have a Learner object with trained model instantiated, just call predict_batch method on the learner object with the list of text data:
```python
texts = ['I really love the Netflix original movies',
'this movie is not worth watching']
predictions = learner.predict_batch(texts)
```
If you have persistent trained model and just want to run inference logic on that trained model, use the second approach, i.e. the predictor object.
```python
from fast_bert.prediction import BertClassificationPredictor
MODEL_PATH = OUTPUT_DIR/'model_out'
predictor = BertClassificationPredictor(
model_path=MODEL_PATH,
label_path=LABEL_PATH, # location for labels.csv file
multi_label=False,
model_type='xlnet',
do_lower_case=False,
device=None) # set custom torch.device, defaults to cuda if available
# Single prediction
single_prediction = predictor.predict("just get me result for this text")
# Batch predictions
texts = [
"this is the first text",
"this is the second text"
]
multiple_predictions = predictor.predict_batch(texts)
```
## Language Model Fine-tuning
A useful approach to use BERT based models on custom datasets is to first finetune the language model task for the custom dataset, an apporach followed by fast.ai's ULMFit. The idea is to start with a pre-trained model and further train the model on the raw text of the custom dataset. We will use the masked LM task to finetune the language model.
This section will describe the usage of FastBert to finetune the language model.
### 1. Import the necessary libraries
The necessary objects are stored in the files with '\_lm' suffix.
```python
# Language model Databunch
from fast_bert.data_lm import BertLMDataBunch
# Language model learner
from fast_bert.learner_lm import BertLMLearner
from pathlib import Path
from box import Box
```
### 2. Define parameters and setup datapaths
```python
# Box is a nice wrapper to create an object from a json dict
args = Box({
"seed": 42,
"task_name": 'imdb_reviews_lm',
"model_name": 'roberta-base',
"model_type": 'roberta',
"train_batch_size": 16,
"learning_rate": 4e-5,
"num_train_epochs": 20,
"fp16": True,
"fp16_opt_level": "O2",
"warmup_steps": 1000,
"logging_steps": 0,
"max_seq_length": 512,
"multi_gpu": True if torch.cuda.device_count() > 1 else False
})
DATA_PATH = Path('../lm_data/')
LOG_PATH = Path('../logs')
MODEL_PATH = Path('../lm_model_{}/'.format(args.model_type))
DATA_PATH.mkdir(exist_ok=True)
MODEL_PATH.mkdir(exist_ok=True)
LOG_PATH.mkdir(exist_ok=True)
```
### 3. Create DataBunch object
The BertLMDataBunch class contains a static method 'from_raw_corpus' that will take the list of raw texts and create DataBunch for the language model learner.
The method will at first preprocess the text list by removing html tags, extra spaces and more and then create files `lm_train.txt` and `lm_val.txt`. These files will be used for training and evaluating the language model finetuning task.
The next step will be to featurize the texts. The text will be tokenized, numericalized and split into blocks on 512 tokens (including special tokens).
```python
databunch_lm = BertLMDataBunch.from_raw_corpus(
data_dir=DATA_PATH,
text_list=texts,
tokenizer=args.model_name,
batch_size_per_gpu=args.train_batch_size,
max_seq_length=args.max_seq_length,
multi_gpu=args.multi_gpu,
model_type=args.model_type,
logger=logger)
```
As this step can take some time based on the size of your custom dataset's text, the featurized data will be cached in pickled files in the data_dir/lm_cache folder.
The next time, instead of using from_raw_corpus method, you may want to directly instantiate the DataBunch object as shown below:
```python
databunch_lm = BertLMDataBunch(
data_dir=DATA_PATH,
tokenizer=args.model_name,
batch_size_per_gpu=args.train_batch_size,
max_seq_length=args.max_seq_length,
multi_gpu=args.multi_gpu,
model_type=args.model_type,
logger=logger)
```
### 4. Create the LM Learner object
BertLearner is the ‘learner’ object that holds everything together. It encapsulates the key logic for the lifecycle of the model such as training, validation and inference.
The learner object will take the databunch created earlier as as input alongwith some of the other parameters such as location for one of the pretrained models, FP16 training, multi_gpu and multi_label options.
The learner class contains the logic for training loop, validation loop, and optimizer strategies. This help the developers focus on their custom use-cases without worrying about these repetitive activities.
At the same time the learner object is flexible enough to be customized either via using flexible parameters or by creating a subclass of BertLearner and redefining relevant methods.
```python
learner = BertLMLearner.from_pretrained_model(
dataBunch=databunch_lm,
pretrained_path=args.model_name,
output_dir=MODEL_PATH,
metrics=[],
device=device,
logger=logger,
multi_gpu=args.multi_gpu,
logging_steps=args.logging_steps,
fp16_opt_level=args.fp16_opt_level)
```
### 5. Train the model
```python
learner.fit(epochs=6,
lr=6e-5,
validate=True, # Evaluate the model after each epoch
schedule_type="warmup_cosine",
optimizer_type="lamb")
```
Fast-Bert now supports LAMB optmizer. Due to the speed of training, we have set LAMB as the default optimizer. You can switch back to AdamW by setting optimizer_type to 'adamw'.
### 6. Save trained model artifacts
```python
learner.save_model()
```
Model artefacts will be persisted in the output_dir/'model_out' path provided to the learner object. Following files will be persisted:
| File name | description |
| ----------------------- | ------------------------------------------------ |
| pytorch_model.bin | trained model weights |
| spiece.model | sentence tokenizer vocabulary (for xlnet models) |
| vocab.txt | workpiece tokenizer vocabulary (for bert models) |
| special_tokens_map.json | special tokens mappings |
| config.json | model config |
| added_tokens.json | list of new tokens |
The pytorch_model.bin contains the finetuned weights and you can point the classification task learner object to this file throgh the `finetuned_wgts_path` parameter.
## Amazon Sagemaker Support
The purpose of this library is to let you train and deploy production grade models. As transformer models require expensive GPUs to train, I have added support for training and deploying model on AWS SageMaker.
The repository contains the docker image and code for building BERT based classification models in Amazon SageMaker.
Please refer to my blog [Train and Deploy the Mighty BERT based NLP models using FastBert and Amazon SageMaker](https://towardsdatascience.com/train-and-deploy-mighty-transformer-nlp-models-using-fastbert-and-aws-sagemaker-cc4303c51cf3) that provides detailed explanation on using SageMaker with FastBert.
## Citation
Please include a mention of [this library](https://github.com/kaushaltrivedi/fast-bert) and HuggingFace [pytorch-transformers](https://github.com/huggingface/pytorch-transformers) library and a link to the present repository if you use this work in a published or open-source project.
Also include my blogs on this topic:
- [Introducing FastBert — A simple Deep Learning library for BERT Models](https://medium.com/huggingface/introducing-fastbert-a-simple-deep-learning-library-for-bert-models-89ff763ad384)
- [Multi-label Text Classification using BERT – The Mighty Transformer](https://medium.com/huggingface/multi-label-text-classification-using-bert-the-mighty-transformer-69714fa3fb3d)
- [Train and Deploy the Mighty BERT based NLP models using FastBert and Amazon SageMaker](https://towardsdatascience.com/train-and-deploy-mighty-transformer-nlp-models-using-fastbert-and-aws-sagemaker-cc4303c51cf3)
%prep
%autosetup -n fast-bert-2.0.10
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-fast-bert -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.10-1
- Package Spec generated
|