summaryrefslogtreecommitdiff
path: root/python-fast-histogram.spec
blob: 9bb7dc28c5126131c8a515f8bf661aae192e6150 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
%global _empty_manifest_terminate_build 0
Name:		python-fast-histogram
Version:	0.11
Release:	1
Summary:	Fast simple 1D and 2D histograms
License:	BSD
URL:		https://github.com/astrofrog/fast-histogram
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/c2/35/36883176c938d8610271093e3b950048a928c200cd4a51b77b70cabd91c9/fast-histogram-0.11.tar.gz

Requires:	python3-numpy
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-hypothesis[numpy]

%description
Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No
nonsense. `Numpy's <http://www.numpy.org>`__ histogram functions are
versatile, and can handle for example non-regular binning, but this
versatility comes at the expense of performance.
The **fast-histogram** mini-package aims to provide simple and fast
histogram functions for regular bins that don't compromise on performance. It doesn't do
anything complicated - it just implements a simple histogram algorithm
in C and keeps it simple. The aim is to have functions that are fast but
also robust and reliable. The result is a 1D histogram function here that
is **7-15x faster** than ``numpy.histogram``, and a 2D histogram function
that is **20-25x faster** than ``numpy.histogram2d``.
To install::
    pip install fast-histogram
or if you use conda you can instead do::
    conda install -c conda-forge fast-histogram
The ``fast_histogram`` module then provides two functions:
``histogram1d`` and ``histogram2d``:
    from fast_histogram import histogram1d, histogram2d

%package -n python3-fast-histogram
Summary:	Fast simple 1D and 2D histograms
Provides:	python-fast-histogram
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-fast-histogram
Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No
nonsense. `Numpy's <http://www.numpy.org>`__ histogram functions are
versatile, and can handle for example non-regular binning, but this
versatility comes at the expense of performance.
The **fast-histogram** mini-package aims to provide simple and fast
histogram functions for regular bins that don't compromise on performance. It doesn't do
anything complicated - it just implements a simple histogram algorithm
in C and keeps it simple. The aim is to have functions that are fast but
also robust and reliable. The result is a 1D histogram function here that
is **7-15x faster** than ``numpy.histogram``, and a 2D histogram function
that is **20-25x faster** than ``numpy.histogram2d``.
To install::
    pip install fast-histogram
or if you use conda you can instead do::
    conda install -c conda-forge fast-histogram
The ``fast_histogram`` module then provides two functions:
``histogram1d`` and ``histogram2d``:
    from fast_histogram import histogram1d, histogram2d

%package help
Summary:	Development documents and examples for fast-histogram
Provides:	python3-fast-histogram-doc
%description help
Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No
nonsense. `Numpy's <http://www.numpy.org>`__ histogram functions are
versatile, and can handle for example non-regular binning, but this
versatility comes at the expense of performance.
The **fast-histogram** mini-package aims to provide simple and fast
histogram functions for regular bins that don't compromise on performance. It doesn't do
anything complicated - it just implements a simple histogram algorithm
in C and keeps it simple. The aim is to have functions that are fast but
also robust and reliable. The result is a 1D histogram function here that
is **7-15x faster** than ``numpy.histogram``, and a 2D histogram function
that is **20-25x faster** than ``numpy.histogram2d``.
To install::
    pip install fast-histogram
or if you use conda you can instead do::
    conda install -c conda-forge fast-histogram
The ``fast_histogram`` module then provides two functions:
``histogram1d`` and ``histogram2d``:
    from fast_histogram import histogram1d, histogram2d

%prep
%autosetup -n fast-histogram-0.11

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-fast-histogram -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 0.11-1
- Package Spec generated