1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
|
%global _empty_manifest_terminate_build 0
Name: python-faust-streaming
Version: 0.10.11
Release: 1
Summary: Python Stream processing.
License: BSD 3-Clause
URL: https://github.com/faust-streaming/faust
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/97/99/1c1524e7420b996ce910346c18f2f0bc73680a18b011896e13bb18d5ed68/faust-streaming-0.10.11.tar.gz
BuildArch: noarch
Requires: python3-aiohttp
Requires: python3-aiohttp-cors
Requires: python3-aiokafka
Requires: python3-click
Requires: python3-mode-streaming
Requires: python3-opentracing
Requires: python3-terminaltables
Requires: python3-yarl
Requires: python3-croniter
Requires: python3-mypy-extensions
Requires: python3-venusian
Requires: python3-intervaltree
Requires: python3-six
Requires: python3-aiodns
Requires: python3-aiomonitor
Requires: python3-faust-cchardet
Requires: python3-ciso8601
Requires: python3-cython
Requires: python3-datadog
Requires: python3-setproctitle
Requires: python3-aiomonitor
Requires: python3-faust-aioeventlet
Requires: python3-dnspython
Requires: python3-aiodns
Requires: python3-faust-cchardet
Requires: python3-ciso8601
Requires: python3-cython
Requires: python3-orjson
Requires: python3-setproctitle
Requires: python3-orjson
Requires: python3-prometheus-client
Requires: python3-aredis
Requires: python3-faust-streaming-rocksdb
Requires: python3-rocksdict
Requires: python3-raven
Requires: python3-raven-aiohttp
Requires: python3-sentry-sdk
Requires: python3-setproctitle
Requires: python3-statsd
Requires: python3-uvloop
Requires: python3-pyyaml
%description

# Python Stream Processing Fork


[](https://codecov.io/gh/faust-streaming/faust)
[](https://join.slack.com/t/fauststreaming/shared_invite/zt-1q1jhq4kh-Q1t~rJgpyuMQ6N38cByE9g)
[](https://github.com/psf/black)



## Installation
`pip install faust-streaming`
## Documentation
- `introduction`: https://faust-streaming.github.io/faust/introduction.html
- `quickstart`: https://faust-streaming.github.io/faust/playbooks/quickstart.html
- `User Guide`: https://faust-streaming.github.io/faust/userguide/index.html
## Why the fork
We have decided to fork the original `Faust` project because there is a critical process of releasing new versions which causes uncertainty in the community. Everybody is welcome to contribute to this `fork`, and you can be added as a maintainer.
We want to:
- Ensure continues release
- Code quality
- Use of latest versions of kafka drivers (for now only [aiokafka](https://github.com/aio-libs/aiokafka))
- Support kafka transactions
- Update the documentation
and more...
## Usage
```python
# Python Streams
# Forever scalable event processing & in-memory durable K/V store;
# as a library w/ asyncio & static typing.
import faust
```
**Faust** is a stream processing library, porting the ideas from
`Kafka Streams` to Python.
It is used at `Robinhood` to build high performance distributed systems
and real-time data pipelines that process billions of events every day.
Faust provides both *stream processing* and *event processing*,
sharing similarity with tools such as `Kafka Streams`, `Apache Spark`, `Storm`, `Samza`, `Flink`,
It does not use a DSL, it's just Python!
This means you can use all your favorite Python libraries
when stream processing: NumPy, PyTorch, Pandas, NLTK, Django,
Flask, SQLAlchemy, ++
Faust requires Python 3.6 or later for the new `async/await`_ syntax,
and variable type annotations.
Here's an example processing a stream of incoming orders:
```python
app = faust.App('myapp', broker='kafka://localhost')
# Models describe how messages are serialized:
# {"account_id": "3fae-...", amount": 3}
class Order(faust.Record):
account_id: str
amount: int
@app.agent(value_type=Order)
async def order(orders):
async for order in orders:
# process infinite stream of orders.
print(f'Order for {order.account_id}: {order.amount}')
```
The Agent decorator defines a "stream processor" that essentially
consumes from a Kafka topic and does something for every event it receives.
The agent is an `async def` function, so can also perform
other operations asynchronously, such as web requests.
This system can persist state, acting like a database.
Tables are named distributed key/value stores you can use
as regular Python dictionaries.
Tables are stored locally on each machine using a super fast
embedded database written in C++, called `RocksDB`.
Tables can also store aggregate counts that are optionally "windowed"
so you can keep track
of "number of clicks from the last day," or
"number of clicks in the last hour." for example. Like `Kafka Streams`,
we support tumbling, hopping and sliding windows of time, and old windows
can be expired to stop data from filling up.
For reliability, we use a Kafka topic as "write-ahead-log".
Whenever a key is changed we publish to the changelog.
Standby nodes consume from this changelog to keep an exact replica
of the data and enables instant recovery should any of the nodes fail.
To the user a table is just a dictionary, but data is persisted between
restarts and replicated across nodes so on failover other nodes can take over
automatically.
You can count page views by URL:
```python
# data sent to 'clicks' topic sharded by URL key.
# e.g. key="http://example.com" value="1"
click_topic = app.topic('clicks', key_type=str, value_type=int)
# default value for missing URL will be 0 with `default=int`
counts = app.Table('click_counts', default=int)
@app.agent(click_topic)
async def count_click(clicks):
async for url, count in clicks.items():
counts[url] += count
```
The data sent to the Kafka topic is partitioned, which means
the clicks will be sharded by URL in such a way that every count
for the same URL will be delivered to the same Faust worker instance.
Faust supports any type of stream data: bytes, Unicode and serialized
structures, but also comes with "Models" that use modern Python
syntax to describe how keys and values in streams are serialized:
```python
# Order is a json serialized dictionary,
# having these fields:
class Order(faust.Record):
account_id: str
product_id: str
price: float
quantity: float = 1.0
orders_topic = app.topic('orders', key_type=str, value_type=Order)
@app.agent(orders_topic)
async def process_order(orders):
async for order in orders:
# process each order using regular Python
total_price = order.price * order.quantity
await send_order_received_email(order.account_id, order)
```
Faust is statically typed, using the `mypy` type checker,
so you can take advantage of static types when writing applications.
The Faust source code is small, well organized, and serves as a good
resource for learning the implementation of `Kafka Streams`.
**Learn more about Faust in the** `introduction` **introduction page**
to read more about Faust, system requirements, installation instructions,
community resources, and more.
**or go directly to the** `quickstart` **tutorial**
to see Faust in action by programming a streaming application.
**then explore the** `User Guide`
for in-depth information organized by topic.
- `Robinhood`: http://robinhood.com
- `async/await`:https://medium.freecodecamp.org/a-guide-to-asynchronous-programming-in-python-with-asyncio-232e2afa44f6
- `Celery`: http://celeryproject.org
- `Kafka Streams`: https://kafka.apache.org/documentation/streams
- `Apache Spark`: http://spark.apache.org
- `Storm`: http://storm.apache.org
- `Samza`: http://samza.apache.org
- `Flink`: http://flink.apache.org
- `RocksDB`: http://rocksdb.org
- `Aerospike`: https://www.aerospike.com/
- `Apache Kafka`: https://kafka.apache.org
## Local development
1. Clone the project
2. Create a virtualenv: `python3.7 -m venv venv && source venv/bin/activate`
3. Install the requirements: `./scripts/install`
4. Run lint: `./scripts/lint`
5. Run tests: `./scripts/tests`
## Faust key points
### Simple
Faust is extremely easy to use. To get started using other stream processing
solutions you have complicated hello-world projects, and
infrastructure requirements. Faust only requires Kafka,
the rest is just Python, so If you know Python you can already use Faust to do
stream processing, and it can integrate with just about anything.
Here's one of the easier applications you can make::
```python
import faust
class Greeting(faust.Record):
from_name: str
to_name: str
app = faust.App('hello-app', broker='kafka://localhost')
topic = app.topic('hello-topic', value_type=Greeting)
@app.agent(topic)
async def hello(greetings):
async for greeting in greetings:
print(f'Hello from {greeting.from_name} to {greeting.to_name}')
@app.timer(interval=1.0)
async def example_sender(app):
await hello.send(
value=Greeting(from_name='Faust', to_name='you'),
)
if __name__ == '__main__':
app.main()
```
You're probably a bit intimidated by the `async` and `await` keywords,
but you don't have to know how ``asyncio`` works to use
Faust: just mimic the examples, and you'll be fine.
The example application starts two tasks: one is processing a stream,
the other is a background thread sending events to that stream.
In a real-life application, your system will publish
events to Kafka topics that your processors can consume from,
and the background thread is only needed to feed data into our
example.
### Highly Available
Faust is highly available and can survive network problems and server
crashes. In the case of node failure, it can automatically recover,
and tables have standby nodes that will take over.
### Distributed
Start more instances of your application as needed.
### Fast
A single-core Faust worker instance can already process tens of thousands
of events every second, and we are reasonably confident that throughput will
increase once we can support a more optimized Kafka client.
### Flexible
Faust is just Python, and a stream is an infinite asynchronous iterator.
If you know how to use Python, you already know how to use Faust,
and it works with your favorite Python libraries like Django, Flask,
SQLAlchemy, NLTK, NumPy, SciPy, TensorFlow, etc.
## Bundles
Faust also defines a group of ``setuptools`` extensions that can be used
to install Faust and the dependencies for a given feature.
You can specify these in your requirements or on the ``pip``
command-line by using brackets. Separate multiple bundles using the comma:
```sh
pip install "faust-streaming[rocksdb]"
pip install "faust-streaming[rocksdb,uvloop,fast,redis,aerospike]"
```
The following bundles are available:
## Faust with extras
### Stores
#### RocksDB
For using `RocksDB` for storing Faust table state. **Recommended in production.**
`pip install faust-streaming[rocksdb]` (uses RocksDB 6)
`pip install faust-streaming[rocksdict]` (uses RocksDB 8, not backwards compatible with 6)
#### Aerospike
`pip install faust-streaming[aerospike]` for using `Aerospike` for storing Faust table state. **Recommended if supported**
### Aerospike Configuration
Aerospike can be enabled as the state store by specifying
`store="aerospike://"`
By default, all tables backed by Aerospike use `use_partitioner=True` and generate changelog topic events similar
to a state store backed by RocksDB.
The following configuration options should be passed in as keys to the options parameter in [Table](https://faust-streaming.github.io/faust/reference/faust.tables.html)
`namespace` : aerospike namespace
`ttl`: TTL for all KV's in the table
`username`: username to connect to the Aerospike cluster
`password`: password to connect to the Aerospike cluster
`hosts` : the hosts parameter as specified in the [aerospike client](https://www.aerospike.com/apidocs/python/aerospike.html)
`policies`: the different policies for read/write/scans [policies](https://www.aerospike.com/apidocs/python/aerospike.html)
`client`: a dict of `host` and `policies` defined above
### Caching
`faust-streaming[redis]` for using `Redis` as a simple caching backend (Memcached-style).
### Codecs
`faust-streaming[yaml]` for using YAML and the `PyYAML` library in streams.
### Optimization
`faust-streaming[fast]` for installing all the available C speedup extensions to Faust core.
### Sensors
`faust-streaming[datadog]` for using the `Datadog` Faust monitor.
`faust-streaming[statsd]` for using the `Statsd` Faust monitor.
`faust-streaming[prometheus]` for using the `Prometheus` Faust monitor.
### Event Loops
`faust-streaming[uvloop]` for using Faust with `uvloop`.
`faust-streaming[eventlet]` for using Faust with `eventlet`
### Debugging
`faust-streaming[debug]` for using `aiomonitor` to connect and debug a running Faust worker.
`faust-streaming[setproctitle]`when the `setproctitle` module is installed the Faust worker will use it to set a nicer process name in `ps`/`top` listings.vAlso installed with the `fast` and `debug` bundles.
## Downloading and installing from source
Download the latest version of Faust from https://pypi.org/project/faust-streaming/
You can install it by doing:
```sh
$ tar xvfz faust-streaming-0.0.0.tar.gz
$ cd faust-streaming-0.0.0
$ python setup.py build
# python setup.py install
```
The last command must be executed as a privileged user if
you are not currently using a virtualenv.
## Using the development version
### With pip
You can install the latest snapshot of Faust using the following `pip` command:
```sh
pip install https://github.com/faust-streaming/faust/zipball/master#egg=faust
```
## FAQ
### Can I use Faust with Django/Flask/etc
Yes! Use ``eventlet`` as a bridge to integrate with ``asyncio``.
### Using eventlet
This approach works with any blocking Python library that can work with `eventlet`
Using `eventlet` requires you to install the `faust-aioeventlet` module,
and you can install this as a bundle along with Faust:
```sh
pip install -U faust-streaming[eventlet]
```
Then to actually use eventlet as the event loop you have to either
use the `-L <faust --loop>` argument to the `faust` program:
```sh
faust -L eventlet -A myproj worker -l info
```
or add `import mode.loop.eventlet` at the top of your entry point script:
```python
#!/usr/bin/env python3
import mode.loop.eventlet # noqa
```
It's very important this is at the very top of the module,
and that it executes before you import libraries.
### Can I use Faust with Tornado
Yes! Use the `tornado.platform.asyncio` [bridge](http://www.tornadoweb.org/en/stable/asyncio.html)
### Can I use Faust with Twisted
Yes! Use the `asyncio` reactor implementation: https://twistedmatrix.com/documents/current/api/twisted.internet.asyncioreactor.html
### Will you support Python 2.7 or Python 3.5
No. Faust requires Python 3.7 or later, since it heavily uses features that were
introduced in Python 3.6 (`async`, `await`, variable type annotations).
### I get a maximum number of open files exceeded error by RocksDB when running a Faust app locally. How can I fix this
You may need to increase the limit for the maximum number of open files.
On macOS and Linux you can use:
```ulimit -n max_open_files``` to increase the open files limit to max_open_files.
On docker, you can use the --ulimit flag:
```docker run --ulimit nofile=50000:100000 <image-tag>```
where 50000 is the soft limit, and 100000 is the hard limit [See the difference](https://unix.stackexchange.com/a/29579).
### What kafka versions faust supports
Faust supports kafka with version >= 0.10.
## Getting Help
### Slack
For discussions about the usage, development, and future of Faust, please join the `fauststream` Slack.
- https://fauststream.slack.com
- Sign-up: https://join.slack.com/t/fauststreaming/shared_invite/zt-1q1jhq4kh-Q1t~rJgpyuMQ6N38cByE9g
## Resources
### Bug tracker
If you have any suggestions, bug reports, or annoyances please report them
to our issue tracker at https://github.com/faust-streaming/faust/issues/
## License
This software is licensed under the `New BSD License`. See the `LICENSE` file in the top distribution directory for the full license text.
### Contributing
Development of `Faust` happens at [GitHub](https://github.com/faust-streaming/faust)
You're highly encouraged to participate in the development of `Faust`.
### Code of Conduct
Everyone interacting in the project's code bases, issue trackers, chat rooms,
and mailing lists is expected to follow the Faust Code of Conduct.
As contributors and maintainers of these projects, and in the interest of fostering
an open and welcoming community, we pledge to respect all people who contribute
through reporting issues, posting feature requests, updating documentation,
submitting pull requests or patches, and other activities.
We are committed to making participation in these projects a harassment-free
experience for everyone, regardless of level of experience, gender,
gender identity and expression, sexual orientation, disability,
personal appearance, body size, race, ethnicity, age,
religion, or nationality.
Examples of unacceptable behavior by participants include:
- The use of sexualized language or imagery
- Personal attacks
- Trolling or insulting/derogatory comments
- Public or private harassment
- Publishing other's private information, such as physical or electronic addresses, without explicit permission
- Other unethical or unprofessional conduct.
Project maintainers have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct. By adopting this Code of Conduct,
project maintainers commit themselves to fairly and consistently applying
these principles to every aspect of managing this project. Project maintainers
who do not follow or enforce the Code of Conduct may be permanently removed from
the project team.
This code of conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community.
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by opening an issue or contacting one or more of the project maintainers.
%package -n python3-faust-streaming
Summary: Python Stream processing.
Provides: python-faust-streaming
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-faust-streaming

# Python Stream Processing Fork


[](https://codecov.io/gh/faust-streaming/faust)
[](https://join.slack.com/t/fauststreaming/shared_invite/zt-1q1jhq4kh-Q1t~rJgpyuMQ6N38cByE9g)
[](https://github.com/psf/black)



## Installation
`pip install faust-streaming`
## Documentation
- `introduction`: https://faust-streaming.github.io/faust/introduction.html
- `quickstart`: https://faust-streaming.github.io/faust/playbooks/quickstart.html
- `User Guide`: https://faust-streaming.github.io/faust/userguide/index.html
## Why the fork
We have decided to fork the original `Faust` project because there is a critical process of releasing new versions which causes uncertainty in the community. Everybody is welcome to contribute to this `fork`, and you can be added as a maintainer.
We want to:
- Ensure continues release
- Code quality
- Use of latest versions of kafka drivers (for now only [aiokafka](https://github.com/aio-libs/aiokafka))
- Support kafka transactions
- Update the documentation
and more...
## Usage
```python
# Python Streams
# Forever scalable event processing & in-memory durable K/V store;
# as a library w/ asyncio & static typing.
import faust
```
**Faust** is a stream processing library, porting the ideas from
`Kafka Streams` to Python.
It is used at `Robinhood` to build high performance distributed systems
and real-time data pipelines that process billions of events every day.
Faust provides both *stream processing* and *event processing*,
sharing similarity with tools such as `Kafka Streams`, `Apache Spark`, `Storm`, `Samza`, `Flink`,
It does not use a DSL, it's just Python!
This means you can use all your favorite Python libraries
when stream processing: NumPy, PyTorch, Pandas, NLTK, Django,
Flask, SQLAlchemy, ++
Faust requires Python 3.6 or later for the new `async/await`_ syntax,
and variable type annotations.
Here's an example processing a stream of incoming orders:
```python
app = faust.App('myapp', broker='kafka://localhost')
# Models describe how messages are serialized:
# {"account_id": "3fae-...", amount": 3}
class Order(faust.Record):
account_id: str
amount: int
@app.agent(value_type=Order)
async def order(orders):
async for order in orders:
# process infinite stream of orders.
print(f'Order for {order.account_id}: {order.amount}')
```
The Agent decorator defines a "stream processor" that essentially
consumes from a Kafka topic and does something for every event it receives.
The agent is an `async def` function, so can also perform
other operations asynchronously, such as web requests.
This system can persist state, acting like a database.
Tables are named distributed key/value stores you can use
as regular Python dictionaries.
Tables are stored locally on each machine using a super fast
embedded database written in C++, called `RocksDB`.
Tables can also store aggregate counts that are optionally "windowed"
so you can keep track
of "number of clicks from the last day," or
"number of clicks in the last hour." for example. Like `Kafka Streams`,
we support tumbling, hopping and sliding windows of time, and old windows
can be expired to stop data from filling up.
For reliability, we use a Kafka topic as "write-ahead-log".
Whenever a key is changed we publish to the changelog.
Standby nodes consume from this changelog to keep an exact replica
of the data and enables instant recovery should any of the nodes fail.
To the user a table is just a dictionary, but data is persisted between
restarts and replicated across nodes so on failover other nodes can take over
automatically.
You can count page views by URL:
```python
# data sent to 'clicks' topic sharded by URL key.
# e.g. key="http://example.com" value="1"
click_topic = app.topic('clicks', key_type=str, value_type=int)
# default value for missing URL will be 0 with `default=int`
counts = app.Table('click_counts', default=int)
@app.agent(click_topic)
async def count_click(clicks):
async for url, count in clicks.items():
counts[url] += count
```
The data sent to the Kafka topic is partitioned, which means
the clicks will be sharded by URL in such a way that every count
for the same URL will be delivered to the same Faust worker instance.
Faust supports any type of stream data: bytes, Unicode and serialized
structures, but also comes with "Models" that use modern Python
syntax to describe how keys and values in streams are serialized:
```python
# Order is a json serialized dictionary,
# having these fields:
class Order(faust.Record):
account_id: str
product_id: str
price: float
quantity: float = 1.0
orders_topic = app.topic('orders', key_type=str, value_type=Order)
@app.agent(orders_topic)
async def process_order(orders):
async for order in orders:
# process each order using regular Python
total_price = order.price * order.quantity
await send_order_received_email(order.account_id, order)
```
Faust is statically typed, using the `mypy` type checker,
so you can take advantage of static types when writing applications.
The Faust source code is small, well organized, and serves as a good
resource for learning the implementation of `Kafka Streams`.
**Learn more about Faust in the** `introduction` **introduction page**
to read more about Faust, system requirements, installation instructions,
community resources, and more.
**or go directly to the** `quickstart` **tutorial**
to see Faust in action by programming a streaming application.
**then explore the** `User Guide`
for in-depth information organized by topic.
- `Robinhood`: http://robinhood.com
- `async/await`:https://medium.freecodecamp.org/a-guide-to-asynchronous-programming-in-python-with-asyncio-232e2afa44f6
- `Celery`: http://celeryproject.org
- `Kafka Streams`: https://kafka.apache.org/documentation/streams
- `Apache Spark`: http://spark.apache.org
- `Storm`: http://storm.apache.org
- `Samza`: http://samza.apache.org
- `Flink`: http://flink.apache.org
- `RocksDB`: http://rocksdb.org
- `Aerospike`: https://www.aerospike.com/
- `Apache Kafka`: https://kafka.apache.org
## Local development
1. Clone the project
2. Create a virtualenv: `python3.7 -m venv venv && source venv/bin/activate`
3. Install the requirements: `./scripts/install`
4. Run lint: `./scripts/lint`
5. Run tests: `./scripts/tests`
## Faust key points
### Simple
Faust is extremely easy to use. To get started using other stream processing
solutions you have complicated hello-world projects, and
infrastructure requirements. Faust only requires Kafka,
the rest is just Python, so If you know Python you can already use Faust to do
stream processing, and it can integrate with just about anything.
Here's one of the easier applications you can make::
```python
import faust
class Greeting(faust.Record):
from_name: str
to_name: str
app = faust.App('hello-app', broker='kafka://localhost')
topic = app.topic('hello-topic', value_type=Greeting)
@app.agent(topic)
async def hello(greetings):
async for greeting in greetings:
print(f'Hello from {greeting.from_name} to {greeting.to_name}')
@app.timer(interval=1.0)
async def example_sender(app):
await hello.send(
value=Greeting(from_name='Faust', to_name='you'),
)
if __name__ == '__main__':
app.main()
```
You're probably a bit intimidated by the `async` and `await` keywords,
but you don't have to know how ``asyncio`` works to use
Faust: just mimic the examples, and you'll be fine.
The example application starts two tasks: one is processing a stream,
the other is a background thread sending events to that stream.
In a real-life application, your system will publish
events to Kafka topics that your processors can consume from,
and the background thread is only needed to feed data into our
example.
### Highly Available
Faust is highly available and can survive network problems and server
crashes. In the case of node failure, it can automatically recover,
and tables have standby nodes that will take over.
### Distributed
Start more instances of your application as needed.
### Fast
A single-core Faust worker instance can already process tens of thousands
of events every second, and we are reasonably confident that throughput will
increase once we can support a more optimized Kafka client.
### Flexible
Faust is just Python, and a stream is an infinite asynchronous iterator.
If you know how to use Python, you already know how to use Faust,
and it works with your favorite Python libraries like Django, Flask,
SQLAlchemy, NLTK, NumPy, SciPy, TensorFlow, etc.
## Bundles
Faust also defines a group of ``setuptools`` extensions that can be used
to install Faust and the dependencies for a given feature.
You can specify these in your requirements or on the ``pip``
command-line by using brackets. Separate multiple bundles using the comma:
```sh
pip install "faust-streaming[rocksdb]"
pip install "faust-streaming[rocksdb,uvloop,fast,redis,aerospike]"
```
The following bundles are available:
## Faust with extras
### Stores
#### RocksDB
For using `RocksDB` for storing Faust table state. **Recommended in production.**
`pip install faust-streaming[rocksdb]` (uses RocksDB 6)
`pip install faust-streaming[rocksdict]` (uses RocksDB 8, not backwards compatible with 6)
#### Aerospike
`pip install faust-streaming[aerospike]` for using `Aerospike` for storing Faust table state. **Recommended if supported**
### Aerospike Configuration
Aerospike can be enabled as the state store by specifying
`store="aerospike://"`
By default, all tables backed by Aerospike use `use_partitioner=True` and generate changelog topic events similar
to a state store backed by RocksDB.
The following configuration options should be passed in as keys to the options parameter in [Table](https://faust-streaming.github.io/faust/reference/faust.tables.html)
`namespace` : aerospike namespace
`ttl`: TTL for all KV's in the table
`username`: username to connect to the Aerospike cluster
`password`: password to connect to the Aerospike cluster
`hosts` : the hosts parameter as specified in the [aerospike client](https://www.aerospike.com/apidocs/python/aerospike.html)
`policies`: the different policies for read/write/scans [policies](https://www.aerospike.com/apidocs/python/aerospike.html)
`client`: a dict of `host` and `policies` defined above
### Caching
`faust-streaming[redis]` for using `Redis` as a simple caching backend (Memcached-style).
### Codecs
`faust-streaming[yaml]` for using YAML and the `PyYAML` library in streams.
### Optimization
`faust-streaming[fast]` for installing all the available C speedup extensions to Faust core.
### Sensors
`faust-streaming[datadog]` for using the `Datadog` Faust monitor.
`faust-streaming[statsd]` for using the `Statsd` Faust monitor.
`faust-streaming[prometheus]` for using the `Prometheus` Faust monitor.
### Event Loops
`faust-streaming[uvloop]` for using Faust with `uvloop`.
`faust-streaming[eventlet]` for using Faust with `eventlet`
### Debugging
`faust-streaming[debug]` for using `aiomonitor` to connect and debug a running Faust worker.
`faust-streaming[setproctitle]`when the `setproctitle` module is installed the Faust worker will use it to set a nicer process name in `ps`/`top` listings.vAlso installed with the `fast` and `debug` bundles.
## Downloading and installing from source
Download the latest version of Faust from https://pypi.org/project/faust-streaming/
You can install it by doing:
```sh
$ tar xvfz faust-streaming-0.0.0.tar.gz
$ cd faust-streaming-0.0.0
$ python setup.py build
# python setup.py install
```
The last command must be executed as a privileged user if
you are not currently using a virtualenv.
## Using the development version
### With pip
You can install the latest snapshot of Faust using the following `pip` command:
```sh
pip install https://github.com/faust-streaming/faust/zipball/master#egg=faust
```
## FAQ
### Can I use Faust with Django/Flask/etc
Yes! Use ``eventlet`` as a bridge to integrate with ``asyncio``.
### Using eventlet
This approach works with any blocking Python library that can work with `eventlet`
Using `eventlet` requires you to install the `faust-aioeventlet` module,
and you can install this as a bundle along with Faust:
```sh
pip install -U faust-streaming[eventlet]
```
Then to actually use eventlet as the event loop you have to either
use the `-L <faust --loop>` argument to the `faust` program:
```sh
faust -L eventlet -A myproj worker -l info
```
or add `import mode.loop.eventlet` at the top of your entry point script:
```python
#!/usr/bin/env python3
import mode.loop.eventlet # noqa
```
It's very important this is at the very top of the module,
and that it executes before you import libraries.
### Can I use Faust with Tornado
Yes! Use the `tornado.platform.asyncio` [bridge](http://www.tornadoweb.org/en/stable/asyncio.html)
### Can I use Faust with Twisted
Yes! Use the `asyncio` reactor implementation: https://twistedmatrix.com/documents/current/api/twisted.internet.asyncioreactor.html
### Will you support Python 2.7 or Python 3.5
No. Faust requires Python 3.7 or later, since it heavily uses features that were
introduced in Python 3.6 (`async`, `await`, variable type annotations).
### I get a maximum number of open files exceeded error by RocksDB when running a Faust app locally. How can I fix this
You may need to increase the limit for the maximum number of open files.
On macOS and Linux you can use:
```ulimit -n max_open_files``` to increase the open files limit to max_open_files.
On docker, you can use the --ulimit flag:
```docker run --ulimit nofile=50000:100000 <image-tag>```
where 50000 is the soft limit, and 100000 is the hard limit [See the difference](https://unix.stackexchange.com/a/29579).
### What kafka versions faust supports
Faust supports kafka with version >= 0.10.
## Getting Help
### Slack
For discussions about the usage, development, and future of Faust, please join the `fauststream` Slack.
- https://fauststream.slack.com
- Sign-up: https://join.slack.com/t/fauststreaming/shared_invite/zt-1q1jhq4kh-Q1t~rJgpyuMQ6N38cByE9g
## Resources
### Bug tracker
If you have any suggestions, bug reports, or annoyances please report them
to our issue tracker at https://github.com/faust-streaming/faust/issues/
## License
This software is licensed under the `New BSD License`. See the `LICENSE` file in the top distribution directory for the full license text.
### Contributing
Development of `Faust` happens at [GitHub](https://github.com/faust-streaming/faust)
You're highly encouraged to participate in the development of `Faust`.
### Code of Conduct
Everyone interacting in the project's code bases, issue trackers, chat rooms,
and mailing lists is expected to follow the Faust Code of Conduct.
As contributors and maintainers of these projects, and in the interest of fostering
an open and welcoming community, we pledge to respect all people who contribute
through reporting issues, posting feature requests, updating documentation,
submitting pull requests or patches, and other activities.
We are committed to making participation in these projects a harassment-free
experience for everyone, regardless of level of experience, gender,
gender identity and expression, sexual orientation, disability,
personal appearance, body size, race, ethnicity, age,
religion, or nationality.
Examples of unacceptable behavior by participants include:
- The use of sexualized language or imagery
- Personal attacks
- Trolling or insulting/derogatory comments
- Public or private harassment
- Publishing other's private information, such as physical or electronic addresses, without explicit permission
- Other unethical or unprofessional conduct.
Project maintainers have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct. By adopting this Code of Conduct,
project maintainers commit themselves to fairly and consistently applying
these principles to every aspect of managing this project. Project maintainers
who do not follow or enforce the Code of Conduct may be permanently removed from
the project team.
This code of conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community.
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by opening an issue or contacting one or more of the project maintainers.
%package help
Summary: Development documents and examples for faust-streaming
Provides: python3-faust-streaming-doc
%description help

# Python Stream Processing Fork


[](https://codecov.io/gh/faust-streaming/faust)
[](https://join.slack.com/t/fauststreaming/shared_invite/zt-1q1jhq4kh-Q1t~rJgpyuMQ6N38cByE9g)
[](https://github.com/psf/black)



## Installation
`pip install faust-streaming`
## Documentation
- `introduction`: https://faust-streaming.github.io/faust/introduction.html
- `quickstart`: https://faust-streaming.github.io/faust/playbooks/quickstart.html
- `User Guide`: https://faust-streaming.github.io/faust/userguide/index.html
## Why the fork
We have decided to fork the original `Faust` project because there is a critical process of releasing new versions which causes uncertainty in the community. Everybody is welcome to contribute to this `fork`, and you can be added as a maintainer.
We want to:
- Ensure continues release
- Code quality
- Use of latest versions of kafka drivers (for now only [aiokafka](https://github.com/aio-libs/aiokafka))
- Support kafka transactions
- Update the documentation
and more...
## Usage
```python
# Python Streams
# Forever scalable event processing & in-memory durable K/V store;
# as a library w/ asyncio & static typing.
import faust
```
**Faust** is a stream processing library, porting the ideas from
`Kafka Streams` to Python.
It is used at `Robinhood` to build high performance distributed systems
and real-time data pipelines that process billions of events every day.
Faust provides both *stream processing* and *event processing*,
sharing similarity with tools such as `Kafka Streams`, `Apache Spark`, `Storm`, `Samza`, `Flink`,
It does not use a DSL, it's just Python!
This means you can use all your favorite Python libraries
when stream processing: NumPy, PyTorch, Pandas, NLTK, Django,
Flask, SQLAlchemy, ++
Faust requires Python 3.6 or later for the new `async/await`_ syntax,
and variable type annotations.
Here's an example processing a stream of incoming orders:
```python
app = faust.App('myapp', broker='kafka://localhost')
# Models describe how messages are serialized:
# {"account_id": "3fae-...", amount": 3}
class Order(faust.Record):
account_id: str
amount: int
@app.agent(value_type=Order)
async def order(orders):
async for order in orders:
# process infinite stream of orders.
print(f'Order for {order.account_id}: {order.amount}')
```
The Agent decorator defines a "stream processor" that essentially
consumes from a Kafka topic and does something for every event it receives.
The agent is an `async def` function, so can also perform
other operations asynchronously, such as web requests.
This system can persist state, acting like a database.
Tables are named distributed key/value stores you can use
as regular Python dictionaries.
Tables are stored locally on each machine using a super fast
embedded database written in C++, called `RocksDB`.
Tables can also store aggregate counts that are optionally "windowed"
so you can keep track
of "number of clicks from the last day," or
"number of clicks in the last hour." for example. Like `Kafka Streams`,
we support tumbling, hopping and sliding windows of time, and old windows
can be expired to stop data from filling up.
For reliability, we use a Kafka topic as "write-ahead-log".
Whenever a key is changed we publish to the changelog.
Standby nodes consume from this changelog to keep an exact replica
of the data and enables instant recovery should any of the nodes fail.
To the user a table is just a dictionary, but data is persisted between
restarts and replicated across nodes so on failover other nodes can take over
automatically.
You can count page views by URL:
```python
# data sent to 'clicks' topic sharded by URL key.
# e.g. key="http://example.com" value="1"
click_topic = app.topic('clicks', key_type=str, value_type=int)
# default value for missing URL will be 0 with `default=int`
counts = app.Table('click_counts', default=int)
@app.agent(click_topic)
async def count_click(clicks):
async for url, count in clicks.items():
counts[url] += count
```
The data sent to the Kafka topic is partitioned, which means
the clicks will be sharded by URL in such a way that every count
for the same URL will be delivered to the same Faust worker instance.
Faust supports any type of stream data: bytes, Unicode and serialized
structures, but also comes with "Models" that use modern Python
syntax to describe how keys and values in streams are serialized:
```python
# Order is a json serialized dictionary,
# having these fields:
class Order(faust.Record):
account_id: str
product_id: str
price: float
quantity: float = 1.0
orders_topic = app.topic('orders', key_type=str, value_type=Order)
@app.agent(orders_topic)
async def process_order(orders):
async for order in orders:
# process each order using regular Python
total_price = order.price * order.quantity
await send_order_received_email(order.account_id, order)
```
Faust is statically typed, using the `mypy` type checker,
so you can take advantage of static types when writing applications.
The Faust source code is small, well organized, and serves as a good
resource for learning the implementation of `Kafka Streams`.
**Learn more about Faust in the** `introduction` **introduction page**
to read more about Faust, system requirements, installation instructions,
community resources, and more.
**or go directly to the** `quickstart` **tutorial**
to see Faust in action by programming a streaming application.
**then explore the** `User Guide`
for in-depth information organized by topic.
- `Robinhood`: http://robinhood.com
- `async/await`:https://medium.freecodecamp.org/a-guide-to-asynchronous-programming-in-python-with-asyncio-232e2afa44f6
- `Celery`: http://celeryproject.org
- `Kafka Streams`: https://kafka.apache.org/documentation/streams
- `Apache Spark`: http://spark.apache.org
- `Storm`: http://storm.apache.org
- `Samza`: http://samza.apache.org
- `Flink`: http://flink.apache.org
- `RocksDB`: http://rocksdb.org
- `Aerospike`: https://www.aerospike.com/
- `Apache Kafka`: https://kafka.apache.org
## Local development
1. Clone the project
2. Create a virtualenv: `python3.7 -m venv venv && source venv/bin/activate`
3. Install the requirements: `./scripts/install`
4. Run lint: `./scripts/lint`
5. Run tests: `./scripts/tests`
## Faust key points
### Simple
Faust is extremely easy to use. To get started using other stream processing
solutions you have complicated hello-world projects, and
infrastructure requirements. Faust only requires Kafka,
the rest is just Python, so If you know Python you can already use Faust to do
stream processing, and it can integrate with just about anything.
Here's one of the easier applications you can make::
```python
import faust
class Greeting(faust.Record):
from_name: str
to_name: str
app = faust.App('hello-app', broker='kafka://localhost')
topic = app.topic('hello-topic', value_type=Greeting)
@app.agent(topic)
async def hello(greetings):
async for greeting in greetings:
print(f'Hello from {greeting.from_name} to {greeting.to_name}')
@app.timer(interval=1.0)
async def example_sender(app):
await hello.send(
value=Greeting(from_name='Faust', to_name='you'),
)
if __name__ == '__main__':
app.main()
```
You're probably a bit intimidated by the `async` and `await` keywords,
but you don't have to know how ``asyncio`` works to use
Faust: just mimic the examples, and you'll be fine.
The example application starts two tasks: one is processing a stream,
the other is a background thread sending events to that stream.
In a real-life application, your system will publish
events to Kafka topics that your processors can consume from,
and the background thread is only needed to feed data into our
example.
### Highly Available
Faust is highly available and can survive network problems and server
crashes. In the case of node failure, it can automatically recover,
and tables have standby nodes that will take over.
### Distributed
Start more instances of your application as needed.
### Fast
A single-core Faust worker instance can already process tens of thousands
of events every second, and we are reasonably confident that throughput will
increase once we can support a more optimized Kafka client.
### Flexible
Faust is just Python, and a stream is an infinite asynchronous iterator.
If you know how to use Python, you already know how to use Faust,
and it works with your favorite Python libraries like Django, Flask,
SQLAlchemy, NLTK, NumPy, SciPy, TensorFlow, etc.
## Bundles
Faust also defines a group of ``setuptools`` extensions that can be used
to install Faust and the dependencies for a given feature.
You can specify these in your requirements or on the ``pip``
command-line by using brackets. Separate multiple bundles using the comma:
```sh
pip install "faust-streaming[rocksdb]"
pip install "faust-streaming[rocksdb,uvloop,fast,redis,aerospike]"
```
The following bundles are available:
## Faust with extras
### Stores
#### RocksDB
For using `RocksDB` for storing Faust table state. **Recommended in production.**
`pip install faust-streaming[rocksdb]` (uses RocksDB 6)
`pip install faust-streaming[rocksdict]` (uses RocksDB 8, not backwards compatible with 6)
#### Aerospike
`pip install faust-streaming[aerospike]` for using `Aerospike` for storing Faust table state. **Recommended if supported**
### Aerospike Configuration
Aerospike can be enabled as the state store by specifying
`store="aerospike://"`
By default, all tables backed by Aerospike use `use_partitioner=True` and generate changelog topic events similar
to a state store backed by RocksDB.
The following configuration options should be passed in as keys to the options parameter in [Table](https://faust-streaming.github.io/faust/reference/faust.tables.html)
`namespace` : aerospike namespace
`ttl`: TTL for all KV's in the table
`username`: username to connect to the Aerospike cluster
`password`: password to connect to the Aerospike cluster
`hosts` : the hosts parameter as specified in the [aerospike client](https://www.aerospike.com/apidocs/python/aerospike.html)
`policies`: the different policies for read/write/scans [policies](https://www.aerospike.com/apidocs/python/aerospike.html)
`client`: a dict of `host` and `policies` defined above
### Caching
`faust-streaming[redis]` for using `Redis` as a simple caching backend (Memcached-style).
### Codecs
`faust-streaming[yaml]` for using YAML and the `PyYAML` library in streams.
### Optimization
`faust-streaming[fast]` for installing all the available C speedup extensions to Faust core.
### Sensors
`faust-streaming[datadog]` for using the `Datadog` Faust monitor.
`faust-streaming[statsd]` for using the `Statsd` Faust monitor.
`faust-streaming[prometheus]` for using the `Prometheus` Faust monitor.
### Event Loops
`faust-streaming[uvloop]` for using Faust with `uvloop`.
`faust-streaming[eventlet]` for using Faust with `eventlet`
### Debugging
`faust-streaming[debug]` for using `aiomonitor` to connect and debug a running Faust worker.
`faust-streaming[setproctitle]`when the `setproctitle` module is installed the Faust worker will use it to set a nicer process name in `ps`/`top` listings.vAlso installed with the `fast` and `debug` bundles.
## Downloading and installing from source
Download the latest version of Faust from https://pypi.org/project/faust-streaming/
You can install it by doing:
```sh
$ tar xvfz faust-streaming-0.0.0.tar.gz
$ cd faust-streaming-0.0.0
$ python setup.py build
# python setup.py install
```
The last command must be executed as a privileged user if
you are not currently using a virtualenv.
## Using the development version
### With pip
You can install the latest snapshot of Faust using the following `pip` command:
```sh
pip install https://github.com/faust-streaming/faust/zipball/master#egg=faust
```
## FAQ
### Can I use Faust with Django/Flask/etc
Yes! Use ``eventlet`` as a bridge to integrate with ``asyncio``.
### Using eventlet
This approach works with any blocking Python library that can work with `eventlet`
Using `eventlet` requires you to install the `faust-aioeventlet` module,
and you can install this as a bundle along with Faust:
```sh
pip install -U faust-streaming[eventlet]
```
Then to actually use eventlet as the event loop you have to either
use the `-L <faust --loop>` argument to the `faust` program:
```sh
faust -L eventlet -A myproj worker -l info
```
or add `import mode.loop.eventlet` at the top of your entry point script:
```python
#!/usr/bin/env python3
import mode.loop.eventlet # noqa
```
It's very important this is at the very top of the module,
and that it executes before you import libraries.
### Can I use Faust with Tornado
Yes! Use the `tornado.platform.asyncio` [bridge](http://www.tornadoweb.org/en/stable/asyncio.html)
### Can I use Faust with Twisted
Yes! Use the `asyncio` reactor implementation: https://twistedmatrix.com/documents/current/api/twisted.internet.asyncioreactor.html
### Will you support Python 2.7 or Python 3.5
No. Faust requires Python 3.7 or later, since it heavily uses features that were
introduced in Python 3.6 (`async`, `await`, variable type annotations).
### I get a maximum number of open files exceeded error by RocksDB when running a Faust app locally. How can I fix this
You may need to increase the limit for the maximum number of open files.
On macOS and Linux you can use:
```ulimit -n max_open_files``` to increase the open files limit to max_open_files.
On docker, you can use the --ulimit flag:
```docker run --ulimit nofile=50000:100000 <image-tag>```
where 50000 is the soft limit, and 100000 is the hard limit [See the difference](https://unix.stackexchange.com/a/29579).
### What kafka versions faust supports
Faust supports kafka with version >= 0.10.
## Getting Help
### Slack
For discussions about the usage, development, and future of Faust, please join the `fauststream` Slack.
- https://fauststream.slack.com
- Sign-up: https://join.slack.com/t/fauststreaming/shared_invite/zt-1q1jhq4kh-Q1t~rJgpyuMQ6N38cByE9g
## Resources
### Bug tracker
If you have any suggestions, bug reports, or annoyances please report them
to our issue tracker at https://github.com/faust-streaming/faust/issues/
## License
This software is licensed under the `New BSD License`. See the `LICENSE` file in the top distribution directory for the full license text.
### Contributing
Development of `Faust` happens at [GitHub](https://github.com/faust-streaming/faust)
You're highly encouraged to participate in the development of `Faust`.
### Code of Conduct
Everyone interacting in the project's code bases, issue trackers, chat rooms,
and mailing lists is expected to follow the Faust Code of Conduct.
As contributors and maintainers of these projects, and in the interest of fostering
an open and welcoming community, we pledge to respect all people who contribute
through reporting issues, posting feature requests, updating documentation,
submitting pull requests or patches, and other activities.
We are committed to making participation in these projects a harassment-free
experience for everyone, regardless of level of experience, gender,
gender identity and expression, sexual orientation, disability,
personal appearance, body size, race, ethnicity, age,
religion, or nationality.
Examples of unacceptable behavior by participants include:
- The use of sexualized language or imagery
- Personal attacks
- Trolling or insulting/derogatory comments
- Public or private harassment
- Publishing other's private information, such as physical or electronic addresses, without explicit permission
- Other unethical or unprofessional conduct.
Project maintainers have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct. By adopting this Code of Conduct,
project maintainers commit themselves to fairly and consistently applying
these principles to every aspect of managing this project. Project maintainers
who do not follow or enforce the Code of Conduct may be permanently removed from
the project team.
This code of conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community.
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by opening an issue or contacting one or more of the project maintainers.
%prep
%autosetup -n faust-streaming-0.10.11
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-faust-streaming -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.10.11-1
- Package Spec generated
|