1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
%global _empty_manifest_terminate_build 0
Name: python-featuretools-tsfresh-primitives
Version: 1.0.2
Release: 1
Summary: TSFresh primitives for featuretools
License: MIT
URL: https://github.com/alteryx/featuretools-tsfresh-primitives/
Source0: https://mirrors.aliyun.com/pypi/web/packages/8e/54/9489bcfb8390a99e89c83fc8663966ae28a5d934d9e25868cb2fccdd9c35/featuretools_tsfresh_primitives-1.0.2.tar.gz
BuildArch: noarch
Requires: python3-tsfresh
Requires: python3-pandas
Requires: python3-featuretools
%description
# TSFresh Primitives
<p align="center">
<a href="https://github.com/alteryx/featuretools-tsfresh-primitives/actions?query=branch%3Amain+workflow%3ATests" target="_blank">
<img src="https://github.com/alteryx/featuretools-tsfresh-primitives/workflows/Tests/badge.svg?branch=main" alt="Tests" />
</a>
<a href="https://codecov.io/gh/alteryx/featuretools-tsfresh-primitives">
<img src="https://codecov.io/gh/alteryx/featuretools-tsfresh-primitives/branch/main/graph/badge.svg?token=FtcPOJLpjj"/>
</a>
<a href="https://badge.fury.io/py/featuretools-tsfresh-primitives" target="_blank">
<img src="https://badge.fury.io/py/featuretools-tsfresh-primitives.svg?maxAge=2592000" alt="PyPI Version" />
</a>
<a href="https://pepy.tech/project/featuretools-tsfresh-primitives" target="_blank">
<img src="https://pepy.tech/badge/featuretools-tsfresh-primitives/month" alt="PyPI Downloads" />
</a>
</p>
<hr>
### Installation
Install with pip:
```python
python -m pip install "featuretools[tsfresh]"
```
## Calculating Features
In `tsfresh`, this is how you can calculate a feature.
```python
from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation
data = list(range(10))
param = [{'f_agg': 'mean', 'maxlag': 5}]
agg_autocorrelation(data, param=param)
```
```bash
[('f_agg_"mean"__maxlag_5', 0.1717171717171717)]
```
With tsfresh primtives in `featuretools`, this is how you can calculate the same feature.
```python
from featuretools.tsfresh import AggAutocorrelation
data = list(range(10))
AggAutocorrelation(f_agg='mean', maxlag=5)(data)
```
```bash
0.1717171717171717
```
## Combining Primitives
In `featuretools`, this is how to combine tsfresh primitives with built-in or other installed primitives.
```python
import featuretools as ft
from featuretools.tsfresh import AggAutocorrelation, Mean
entityset = ft.demo.load_mock_customer(return_entityset=True)
agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)]
feature_matrix, features = ft.dfs(entityset=entityset, target_dataframe_name='sessions', agg_primitives=agg_primitives)
feature_matrix[[
'MEAN(transactions.amount)',
'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)',
]].head()
```
```
MEAN(transactions.amount) AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1 76.813125 0.044268
2 74.696000 -0.053110
3 88.600000 0.007520
4 64.557200 -0.034542
5 70.638182 -0.100571
```
Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible.
```python
feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head()
```
```
customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1 0.011102
2 -0.001686
3 -0.010679
4 0.011204
5 -0.010679
```
## Built at Alteryx Innovation Labs
<a href="https://www.alteryx.com/innovation-labs">
<img src="https://evalml-web-images.s3.amazonaws.com/alteryx_innovation_labs.png" alt="Alteryx Innovation Labs" />
</a>
%package -n python3-featuretools-tsfresh-primitives
Summary: TSFresh primitives for featuretools
Provides: python-featuretools-tsfresh-primitives
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-featuretools-tsfresh-primitives
# TSFresh Primitives
<p align="center">
<a href="https://github.com/alteryx/featuretools-tsfresh-primitives/actions?query=branch%3Amain+workflow%3ATests" target="_blank">
<img src="https://github.com/alteryx/featuretools-tsfresh-primitives/workflows/Tests/badge.svg?branch=main" alt="Tests" />
</a>
<a href="https://codecov.io/gh/alteryx/featuretools-tsfresh-primitives">
<img src="https://codecov.io/gh/alteryx/featuretools-tsfresh-primitives/branch/main/graph/badge.svg?token=FtcPOJLpjj"/>
</a>
<a href="https://badge.fury.io/py/featuretools-tsfresh-primitives" target="_blank">
<img src="https://badge.fury.io/py/featuretools-tsfresh-primitives.svg?maxAge=2592000" alt="PyPI Version" />
</a>
<a href="https://pepy.tech/project/featuretools-tsfresh-primitives" target="_blank">
<img src="https://pepy.tech/badge/featuretools-tsfresh-primitives/month" alt="PyPI Downloads" />
</a>
</p>
<hr>
### Installation
Install with pip:
```python
python -m pip install "featuretools[tsfresh]"
```
## Calculating Features
In `tsfresh`, this is how you can calculate a feature.
```python
from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation
data = list(range(10))
param = [{'f_agg': 'mean', 'maxlag': 5}]
agg_autocorrelation(data, param=param)
```
```bash
[('f_agg_"mean"__maxlag_5', 0.1717171717171717)]
```
With tsfresh primtives in `featuretools`, this is how you can calculate the same feature.
```python
from featuretools.tsfresh import AggAutocorrelation
data = list(range(10))
AggAutocorrelation(f_agg='mean', maxlag=5)(data)
```
```bash
0.1717171717171717
```
## Combining Primitives
In `featuretools`, this is how to combine tsfresh primitives with built-in or other installed primitives.
```python
import featuretools as ft
from featuretools.tsfresh import AggAutocorrelation, Mean
entityset = ft.demo.load_mock_customer(return_entityset=True)
agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)]
feature_matrix, features = ft.dfs(entityset=entityset, target_dataframe_name='sessions', agg_primitives=agg_primitives)
feature_matrix[[
'MEAN(transactions.amount)',
'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)',
]].head()
```
```
MEAN(transactions.amount) AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1 76.813125 0.044268
2 74.696000 -0.053110
3 88.600000 0.007520
4 64.557200 -0.034542
5 70.638182 -0.100571
```
Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible.
```python
feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head()
```
```
customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1 0.011102
2 -0.001686
3 -0.010679
4 0.011204
5 -0.010679
```
## Built at Alteryx Innovation Labs
<a href="https://www.alteryx.com/innovation-labs">
<img src="https://evalml-web-images.s3.amazonaws.com/alteryx_innovation_labs.png" alt="Alteryx Innovation Labs" />
</a>
%package help
Summary: Development documents and examples for featuretools-tsfresh-primitives
Provides: python3-featuretools-tsfresh-primitives-doc
%description help
# TSFresh Primitives
<p align="center">
<a href="https://github.com/alteryx/featuretools-tsfresh-primitives/actions?query=branch%3Amain+workflow%3ATests" target="_blank">
<img src="https://github.com/alteryx/featuretools-tsfresh-primitives/workflows/Tests/badge.svg?branch=main" alt="Tests" />
</a>
<a href="https://codecov.io/gh/alteryx/featuretools-tsfresh-primitives">
<img src="https://codecov.io/gh/alteryx/featuretools-tsfresh-primitives/branch/main/graph/badge.svg?token=FtcPOJLpjj"/>
</a>
<a href="https://badge.fury.io/py/featuretools-tsfresh-primitives" target="_blank">
<img src="https://badge.fury.io/py/featuretools-tsfresh-primitives.svg?maxAge=2592000" alt="PyPI Version" />
</a>
<a href="https://pepy.tech/project/featuretools-tsfresh-primitives" target="_blank">
<img src="https://pepy.tech/badge/featuretools-tsfresh-primitives/month" alt="PyPI Downloads" />
</a>
</p>
<hr>
### Installation
Install with pip:
```python
python -m pip install "featuretools[tsfresh]"
```
## Calculating Features
In `tsfresh`, this is how you can calculate a feature.
```python
from tsfresh.feature_extraction.feature_calculators import agg_autocorrelation
data = list(range(10))
param = [{'f_agg': 'mean', 'maxlag': 5}]
agg_autocorrelation(data, param=param)
```
```bash
[('f_agg_"mean"__maxlag_5', 0.1717171717171717)]
```
With tsfresh primtives in `featuretools`, this is how you can calculate the same feature.
```python
from featuretools.tsfresh import AggAutocorrelation
data = list(range(10))
AggAutocorrelation(f_agg='mean', maxlag=5)(data)
```
```bash
0.1717171717171717
```
## Combining Primitives
In `featuretools`, this is how to combine tsfresh primitives with built-in or other installed primitives.
```python
import featuretools as ft
from featuretools.tsfresh import AggAutocorrelation, Mean
entityset = ft.demo.load_mock_customer(return_entityset=True)
agg_primitives = [Mean, AggAutocorrelation(f_agg='mean', maxlag=5)]
feature_matrix, features = ft.dfs(entityset=entityset, target_dataframe_name='sessions', agg_primitives=agg_primitives)
feature_matrix[[
'MEAN(transactions.amount)',
'AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)',
]].head()
```
```
MEAN(transactions.amount) AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1 76.813125 0.044268
2 74.696000 -0.053110
3 88.600000 0.007520
4 64.557200 -0.034542
5 70.638182 -0.100571
```
Notice that tsfresh primtives are applied across relationships in an entityset generating many features that are otherwise not possible.
```python
feature_matrix[['customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)']].head()
```
```
customers.AGG_AUTOCORRELATION(transactions.amount, f_agg=mean, maxlag=5)
session_id
1 0.011102
2 -0.001686
3 -0.010679
4 0.011204
5 -0.010679
```
## Built at Alteryx Innovation Labs
<a href="https://www.alteryx.com/innovation-labs">
<img src="https://evalml-web-images.s3.amazonaws.com/alteryx_innovation_labs.png" alt="Alteryx Innovation Labs" />
</a>
%prep
%autosetup -n featuretools_tsfresh_primitives-1.0.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-featuretools-tsfresh-primitives -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.2-1
- Package Spec generated
|