summaryrefslogtreecommitdiff
path: root/python-finetuner.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-finetuner.spec')
-rw-r--r--python-finetuner.spec660
1 files changed, 660 insertions, 0 deletions
diff --git a/python-finetuner.spec b/python-finetuner.spec
new file mode 100644
index 0000000..2e669da
--- /dev/null
+++ b/python-finetuner.spec
@@ -0,0 +1,660 @@
+%global _empty_manifest_terminate_build 0
+Name: python-finetuner
+Version: 0.7.6
+Release: 1
+Summary: Task-oriented finetuning for better embeddings on neural search.
+License: Apache 2.0
+URL: https://github.com/jina-ai/finetuner/
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1e/f2/65b859918b1e5e4cbfa6e52fb711087e0f44047426e4e7a9c1eb5894eef0/finetuner-0.7.6.tar.gz
+BuildArch: noarch
+
+
+%description
+<br><br>
+
+<p align="center">
+<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
+</p>
+
+
+<p align="center">
+<b>Task-oriented finetuning for better embeddings on neural search</b>
+</p>
+
+<p align=center>
+<a href="https://pypi.org/project/finetuner/"><img alt="PyPI" src="https://img.shields.io/pypi/v/finetuner?label=Release&style=flat-square"></a>
+<a href="https://codecov.io/gh/jina-ai/finetuner"><img alt="Codecov branch" src="https://img.shields.io/codecov/c/github/jina-ai/finetuner/main?logo=Codecov&logoColor=white&style=flat-square"></a>
+<a href="https://pypistats.org/packages/finetuner"><img alt="PyPI - Downloads from official pypistats" src="https://img.shields.io/pypi/dm/finetuner?style=flat-square"></a>
+<a href="https://slack.jina.ai"><img src="https://img.shields.io/badge/Slack-3.6k-blueviolet?logo=slack&amp;logoColor=white&style=flat-square"></a>
+</p>
+
+<!-- start elevator-pitch -->
+
+Fine-tuning is an effective way to improve performance on [neural search](https://jina.ai/news/what-is-neural-search-and-learn-to-build-a-neural-search-engine/) tasks.
+However, setting up and performing fine-tuning can be very time-consuming and resource-intensive.
+
+Jina AI's Finetuner makes fine-tuning easier and faster by streamlining the workflow and handling all the complexity and infrastructure in the cloud.
+With Finetuner, you can easily enhance the performance of pre-trained models,
+making them production-ready [without extensive labeling](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/) or expensive hardware.
+
+🎏 **Better embeddings**: Create high-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems,
+clustering, duplication detection, anomaly detection, or other uses.
+
+⏰ **Low budget, high expectations**: Bring considerable improvements to model performance, making the most out of as little as a few hundred training samples, and finish fine-tuning in as little as an hour.
+
+📈 **Performance promise**: Enhance the performance of pre-trained models so that they deliver state-of-the-art performance on
+domain-specific applications.
+
+🔱 **Simple yet powerful**: Easy access to 40+ mainstream loss functions, 10+ optimizers, layer pruning, weight
+freezing, dimensionality reduction, hard-negative mining, cross-modal models, and distributed training.
+
+☁ **All-in-cloud**: Train using our GPU infrastructure, manage runs, experiments, and artifacts on Jina AI Cloud
+without worrying about resource availability, complex integration, or infrastructure costs.
+
+<!-- end elevator-pitch -->
+
+## [Documentation](https://finetuner.jina.ai/)
+
+## Benchmarks
+
+<table>
+<thead>
+ <tr>
+ <th>Model</th>
+ <th>Task</th>
+ <th>Metric</th>
+ <th>Pretrained</th>
+ <th>Finetuned</th>
+ <th>Delta</th>
+ <th>Run it!</th>
+ </tr>
+</thead>
+<tbody>
+ <tr>
+ <td rowspan="2">BERT</td>
+ <td rowspan="2"><a href="https://www.kaggle.com/c/quora-question-pairs">Quora</a> Question Answering</td>
+ <td>mRR</td>
+ <td>0.835</td>
+ <td>0.967</td>
+ <td><span style="color:green">15.8%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1Ui3Gw3ZL785I7AuzlHv3I0-jTvFFxJ4_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.915</td>
+ <td>0.963</td>
+ <td><span style="color:green">5.3%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">ResNet</td>
+ <td rowspan="2">Visual similarity search on <a href="https://sites.google.com/view/totally-looks-like-dataset">TLL</a></td>
+ <td>mAP</td>
+ <td>0.110</td>
+ <td>0.196</td>
+ <td><span style="color:green">78.2%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1QuUTy3iVR-kTPljkwplKYaJ-NTCgPEc_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.249</td>
+ <td>0.460</td>
+ <td><span style="color:green">84.7%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">CLIP</td>
+ <td rowspan="2"><a href="https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html">Deep Fashion</a> text-to-image search</td>
+ <td>mRR</td>
+ <td>0.575</td>
+ <td>0.676</td>
+ <td><span style="color:green">17.4%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1yKnmy2Qotrh3OhgwWRsMWPFwOSAecBxg?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.473</td>
+ <td>0.564</td>
+ <td><span style="color:green">19.2%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">M-CLIP</td>
+ <td rowspan="2"><a href="https://xmrec.github.io/">Cross market</a> product recommendation (German)</td>
+ <td>mRR</td>
+ <td>0.430</td>
+ <td>0.648</td>
+ <td><span style="color:green">50.7%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/10Wldbu0Zugj7NmQyZwZzuorZ6SSAhtIo"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.247</td>
+ <td>0.340</td>
+ <td><span style="color:green">37.7%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">PointNet++</td>
+ <td rowspan="2"><a href="https://modelnet.cs.princeton.edu/">ModelNet40</a> 3D Mesh Search</td>
+ <td>mRR</td>
+ <td>0.791</td>
+ <td>0.891</td>
+ <td><span style="color:green">12.7%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1lIMDFkUVsWMshU-akJ_hwzBfJ37zLFzU?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.154</td>
+ <td>0.242</td>
+ <td><span style="color:green">57.1%</span></td>
+ </tr>
+
+</tbody>
+</table>
+
+<sub><sup>All metrics were evaluated for k@20 after training for 5 epochs using the Adam optimizer with learning rates of 1e-4 for ResNet, 1e-7 for CLIP and 1e-5 for the BERT models, 5e-4 for PointNet++</sup></sub>
+
+<!-- start install-instruction -->
+
+## Install
+
+Make sure you have Python 3.8+ installed. Finetuner can be installed via `pip` by executing:
+
+```bash
+pip install -U finetuner
+```
+
+If you want to encode `docarray.DocumentArray` objects with the `finetuner.encode` function, you need to install
+`"finetuner[full]"`. This includes a number of additional dependencies, which are necessary for encoding: Torch,
+Torchvision and OpenCLIP:
+
+```bash
+pip install "finetuner[full]"
+```
+
+<!-- end install-instruction -->
+
+> ⚠️ Starting with version 0.5.0, Finetuner computing is performed on Jina AI Cloud. The last local version is `0.4.1`.
+> This version is still available for installation via `pip`. See [Finetuner git tags and releases](https://github.com/jina-ai/finetuner/releases).
+
+<!-- start finetuner-articles -->
+## Articles about Finetuner
+
+Check out our published blogposts and tutorials to see Finetuner in action!
+
+- [Fine-tuning with Low Budget and High Expectations](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/)
+- [Hype and Hybrids: Search is more than Keywords and Vectors](https://jina.ai/news/hype-and-hybrids-multimodal-search-means-more-than-keywords-and-vectors-2/)
+- [Improving Search Quality for Non-English Queries with Fine-tuned Multilingual CLIP Models](https://jina.ai/news/improving-search-quality-non-english-queries-fine-tuned-multilingual-clip-models/)
+- [How Much Do We Get by Finetuning CLIP?](https://jina.ai/news/applying-jina-ai-finetuner-to-clip-less-data-smaller-models-higher-performance/)
+
+<!-- end finetuner-articles -->
+
+<!-- start support-pitch -->
+## Support
+
+- Use [Discussions](https://github.com/jina-ai/finetuner/discussions) to talk about your use cases, questions, and
+ support queries.
+- Join our [Slack community](https://slack.jina.ai) and chat with other Jina AI community members about ideas.
+- Join our [Engineering All Hands](https://youtube.com/playlist?list=PL3UBBWOUVhFYRUa_gpYYKBqEAkO4sxmne) meet-up to discuss your use case and learn Jina AI new features.
+ - **When?** The second Tuesday of every month
+ - **Where?**
+ Zoom ([see our public events calendar](https://calendar.google.com/calendar/embed?src=c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com&ctz=Europe%2FBerlin)/[.ical](https://calendar.google.com/calendar/ical/c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com/public/basic.ics))
+ and [live stream on YouTube](https://youtube.com/c/jina-ai)
+- Subscribe to the latest video tutorials on our [YouTube channel](https://youtube.com/c/jina-ai)
+
+## Join Us
+
+Finetuner is backed by [Jina AI](https://jina.ai) and licensed under [Apache-2.0](./LICENSE).
+
+[We are actively hiring](https://jobs.jina.ai) AI engineers and solution engineers to build the next generation of
+open-source AI ecosystems.
+
+<!-- end support-pitch -->
+
+%package -n python3-finetuner
+Summary: Task-oriented finetuning for better embeddings on neural search.
+Provides: python-finetuner
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-finetuner
+<br><br>
+
+<p align="center">
+<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
+</p>
+
+
+<p align="center">
+<b>Task-oriented finetuning for better embeddings on neural search</b>
+</p>
+
+<p align=center>
+<a href="https://pypi.org/project/finetuner/"><img alt="PyPI" src="https://img.shields.io/pypi/v/finetuner?label=Release&style=flat-square"></a>
+<a href="https://codecov.io/gh/jina-ai/finetuner"><img alt="Codecov branch" src="https://img.shields.io/codecov/c/github/jina-ai/finetuner/main?logo=Codecov&logoColor=white&style=flat-square"></a>
+<a href="https://pypistats.org/packages/finetuner"><img alt="PyPI - Downloads from official pypistats" src="https://img.shields.io/pypi/dm/finetuner?style=flat-square"></a>
+<a href="https://slack.jina.ai"><img src="https://img.shields.io/badge/Slack-3.6k-blueviolet?logo=slack&amp;logoColor=white&style=flat-square"></a>
+</p>
+
+<!-- start elevator-pitch -->
+
+Fine-tuning is an effective way to improve performance on [neural search](https://jina.ai/news/what-is-neural-search-and-learn-to-build-a-neural-search-engine/) tasks.
+However, setting up and performing fine-tuning can be very time-consuming and resource-intensive.
+
+Jina AI's Finetuner makes fine-tuning easier and faster by streamlining the workflow and handling all the complexity and infrastructure in the cloud.
+With Finetuner, you can easily enhance the performance of pre-trained models,
+making them production-ready [without extensive labeling](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/) or expensive hardware.
+
+🎏 **Better embeddings**: Create high-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems,
+clustering, duplication detection, anomaly detection, or other uses.
+
+⏰ **Low budget, high expectations**: Bring considerable improvements to model performance, making the most out of as little as a few hundred training samples, and finish fine-tuning in as little as an hour.
+
+📈 **Performance promise**: Enhance the performance of pre-trained models so that they deliver state-of-the-art performance on
+domain-specific applications.
+
+🔱 **Simple yet powerful**: Easy access to 40+ mainstream loss functions, 10+ optimizers, layer pruning, weight
+freezing, dimensionality reduction, hard-negative mining, cross-modal models, and distributed training.
+
+☁ **All-in-cloud**: Train using our GPU infrastructure, manage runs, experiments, and artifacts on Jina AI Cloud
+without worrying about resource availability, complex integration, or infrastructure costs.
+
+<!-- end elevator-pitch -->
+
+## [Documentation](https://finetuner.jina.ai/)
+
+## Benchmarks
+
+<table>
+<thead>
+ <tr>
+ <th>Model</th>
+ <th>Task</th>
+ <th>Metric</th>
+ <th>Pretrained</th>
+ <th>Finetuned</th>
+ <th>Delta</th>
+ <th>Run it!</th>
+ </tr>
+</thead>
+<tbody>
+ <tr>
+ <td rowspan="2">BERT</td>
+ <td rowspan="2"><a href="https://www.kaggle.com/c/quora-question-pairs">Quora</a> Question Answering</td>
+ <td>mRR</td>
+ <td>0.835</td>
+ <td>0.967</td>
+ <td><span style="color:green">15.8%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1Ui3Gw3ZL785I7AuzlHv3I0-jTvFFxJ4_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.915</td>
+ <td>0.963</td>
+ <td><span style="color:green">5.3%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">ResNet</td>
+ <td rowspan="2">Visual similarity search on <a href="https://sites.google.com/view/totally-looks-like-dataset">TLL</a></td>
+ <td>mAP</td>
+ <td>0.110</td>
+ <td>0.196</td>
+ <td><span style="color:green">78.2%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1QuUTy3iVR-kTPljkwplKYaJ-NTCgPEc_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.249</td>
+ <td>0.460</td>
+ <td><span style="color:green">84.7%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">CLIP</td>
+ <td rowspan="2"><a href="https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html">Deep Fashion</a> text-to-image search</td>
+ <td>mRR</td>
+ <td>0.575</td>
+ <td>0.676</td>
+ <td><span style="color:green">17.4%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1yKnmy2Qotrh3OhgwWRsMWPFwOSAecBxg?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.473</td>
+ <td>0.564</td>
+ <td><span style="color:green">19.2%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">M-CLIP</td>
+ <td rowspan="2"><a href="https://xmrec.github.io/">Cross market</a> product recommendation (German)</td>
+ <td>mRR</td>
+ <td>0.430</td>
+ <td>0.648</td>
+ <td><span style="color:green">50.7%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/10Wldbu0Zugj7NmQyZwZzuorZ6SSAhtIo"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.247</td>
+ <td>0.340</td>
+ <td><span style="color:green">37.7%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">PointNet++</td>
+ <td rowspan="2"><a href="https://modelnet.cs.princeton.edu/">ModelNet40</a> 3D Mesh Search</td>
+ <td>mRR</td>
+ <td>0.791</td>
+ <td>0.891</td>
+ <td><span style="color:green">12.7%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1lIMDFkUVsWMshU-akJ_hwzBfJ37zLFzU?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.154</td>
+ <td>0.242</td>
+ <td><span style="color:green">57.1%</span></td>
+ </tr>
+
+</tbody>
+</table>
+
+<sub><sup>All metrics were evaluated for k@20 after training for 5 epochs using the Adam optimizer with learning rates of 1e-4 for ResNet, 1e-7 for CLIP and 1e-5 for the BERT models, 5e-4 for PointNet++</sup></sub>
+
+<!-- start install-instruction -->
+
+## Install
+
+Make sure you have Python 3.8+ installed. Finetuner can be installed via `pip` by executing:
+
+```bash
+pip install -U finetuner
+```
+
+If you want to encode `docarray.DocumentArray` objects with the `finetuner.encode` function, you need to install
+`"finetuner[full]"`. This includes a number of additional dependencies, which are necessary for encoding: Torch,
+Torchvision and OpenCLIP:
+
+```bash
+pip install "finetuner[full]"
+```
+
+<!-- end install-instruction -->
+
+> ⚠️ Starting with version 0.5.0, Finetuner computing is performed on Jina AI Cloud. The last local version is `0.4.1`.
+> This version is still available for installation via `pip`. See [Finetuner git tags and releases](https://github.com/jina-ai/finetuner/releases).
+
+<!-- start finetuner-articles -->
+## Articles about Finetuner
+
+Check out our published blogposts and tutorials to see Finetuner in action!
+
+- [Fine-tuning with Low Budget and High Expectations](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/)
+- [Hype and Hybrids: Search is more than Keywords and Vectors](https://jina.ai/news/hype-and-hybrids-multimodal-search-means-more-than-keywords-and-vectors-2/)
+- [Improving Search Quality for Non-English Queries with Fine-tuned Multilingual CLIP Models](https://jina.ai/news/improving-search-quality-non-english-queries-fine-tuned-multilingual-clip-models/)
+- [How Much Do We Get by Finetuning CLIP?](https://jina.ai/news/applying-jina-ai-finetuner-to-clip-less-data-smaller-models-higher-performance/)
+
+<!-- end finetuner-articles -->
+
+<!-- start support-pitch -->
+## Support
+
+- Use [Discussions](https://github.com/jina-ai/finetuner/discussions) to talk about your use cases, questions, and
+ support queries.
+- Join our [Slack community](https://slack.jina.ai) and chat with other Jina AI community members about ideas.
+- Join our [Engineering All Hands](https://youtube.com/playlist?list=PL3UBBWOUVhFYRUa_gpYYKBqEAkO4sxmne) meet-up to discuss your use case and learn Jina AI new features.
+ - **When?** The second Tuesday of every month
+ - **Where?**
+ Zoom ([see our public events calendar](https://calendar.google.com/calendar/embed?src=c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com&ctz=Europe%2FBerlin)/[.ical](https://calendar.google.com/calendar/ical/c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com/public/basic.ics))
+ and [live stream on YouTube](https://youtube.com/c/jina-ai)
+- Subscribe to the latest video tutorials on our [YouTube channel](https://youtube.com/c/jina-ai)
+
+## Join Us
+
+Finetuner is backed by [Jina AI](https://jina.ai) and licensed under [Apache-2.0](./LICENSE).
+
+[We are actively hiring](https://jobs.jina.ai) AI engineers and solution engineers to build the next generation of
+open-source AI ecosystems.
+
+<!-- end support-pitch -->
+
+%package help
+Summary: Development documents and examples for finetuner
+Provides: python3-finetuner-doc
+%description help
+<br><br>
+
+<p align="center">
+<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
+</p>
+
+
+<p align="center">
+<b>Task-oriented finetuning for better embeddings on neural search</b>
+</p>
+
+<p align=center>
+<a href="https://pypi.org/project/finetuner/"><img alt="PyPI" src="https://img.shields.io/pypi/v/finetuner?label=Release&style=flat-square"></a>
+<a href="https://codecov.io/gh/jina-ai/finetuner"><img alt="Codecov branch" src="https://img.shields.io/codecov/c/github/jina-ai/finetuner/main?logo=Codecov&logoColor=white&style=flat-square"></a>
+<a href="https://pypistats.org/packages/finetuner"><img alt="PyPI - Downloads from official pypistats" src="https://img.shields.io/pypi/dm/finetuner?style=flat-square"></a>
+<a href="https://slack.jina.ai"><img src="https://img.shields.io/badge/Slack-3.6k-blueviolet?logo=slack&amp;logoColor=white&style=flat-square"></a>
+</p>
+
+<!-- start elevator-pitch -->
+
+Fine-tuning is an effective way to improve performance on [neural search](https://jina.ai/news/what-is-neural-search-and-learn-to-build-a-neural-search-engine/) tasks.
+However, setting up and performing fine-tuning can be very time-consuming and resource-intensive.
+
+Jina AI's Finetuner makes fine-tuning easier and faster by streamlining the workflow and handling all the complexity and infrastructure in the cloud.
+With Finetuner, you can easily enhance the performance of pre-trained models,
+making them production-ready [without extensive labeling](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/) or expensive hardware.
+
+🎏 **Better embeddings**: Create high-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems,
+clustering, duplication detection, anomaly detection, or other uses.
+
+⏰ **Low budget, high expectations**: Bring considerable improvements to model performance, making the most out of as little as a few hundred training samples, and finish fine-tuning in as little as an hour.
+
+📈 **Performance promise**: Enhance the performance of pre-trained models so that they deliver state-of-the-art performance on
+domain-specific applications.
+
+🔱 **Simple yet powerful**: Easy access to 40+ mainstream loss functions, 10+ optimizers, layer pruning, weight
+freezing, dimensionality reduction, hard-negative mining, cross-modal models, and distributed training.
+
+☁ **All-in-cloud**: Train using our GPU infrastructure, manage runs, experiments, and artifacts on Jina AI Cloud
+without worrying about resource availability, complex integration, or infrastructure costs.
+
+<!-- end elevator-pitch -->
+
+## [Documentation](https://finetuner.jina.ai/)
+
+## Benchmarks
+
+<table>
+<thead>
+ <tr>
+ <th>Model</th>
+ <th>Task</th>
+ <th>Metric</th>
+ <th>Pretrained</th>
+ <th>Finetuned</th>
+ <th>Delta</th>
+ <th>Run it!</th>
+ </tr>
+</thead>
+<tbody>
+ <tr>
+ <td rowspan="2">BERT</td>
+ <td rowspan="2"><a href="https://www.kaggle.com/c/quora-question-pairs">Quora</a> Question Answering</td>
+ <td>mRR</td>
+ <td>0.835</td>
+ <td>0.967</td>
+ <td><span style="color:green">15.8%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1Ui3Gw3ZL785I7AuzlHv3I0-jTvFFxJ4_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.915</td>
+ <td>0.963</td>
+ <td><span style="color:green">5.3%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">ResNet</td>
+ <td rowspan="2">Visual similarity search on <a href="https://sites.google.com/view/totally-looks-like-dataset">TLL</a></td>
+ <td>mAP</td>
+ <td>0.110</td>
+ <td>0.196</td>
+ <td><span style="color:green">78.2%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1QuUTy3iVR-kTPljkwplKYaJ-NTCgPEc_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.249</td>
+ <td>0.460</td>
+ <td><span style="color:green">84.7%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">CLIP</td>
+ <td rowspan="2"><a href="https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html">Deep Fashion</a> text-to-image search</td>
+ <td>mRR</td>
+ <td>0.575</td>
+ <td>0.676</td>
+ <td><span style="color:green">17.4%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1yKnmy2Qotrh3OhgwWRsMWPFwOSAecBxg?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.473</td>
+ <td>0.564</td>
+ <td><span style="color:green">19.2%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">M-CLIP</td>
+ <td rowspan="2"><a href="https://xmrec.github.io/">Cross market</a> product recommendation (German)</td>
+ <td>mRR</td>
+ <td>0.430</td>
+ <td>0.648</td>
+ <td><span style="color:green">50.7%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/10Wldbu0Zugj7NmQyZwZzuorZ6SSAhtIo"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.247</td>
+ <td>0.340</td>
+ <td><span style="color:green">37.7%</span></td>
+ </tr>
+ <tr>
+ <td rowspan="2">PointNet++</td>
+ <td rowspan="2"><a href="https://modelnet.cs.princeton.edu/">ModelNet40</a> 3D Mesh Search</td>
+ <td>mRR</td>
+ <td>0.791</td>
+ <td>0.891</td>
+ <td><span style="color:green">12.7%</span></td>
+ <td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1lIMDFkUVsWMshU-akJ_hwzBfJ37zLFzU?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
+ </tr>
+ <tr>
+ <td>Recall</td>
+ <td>0.154</td>
+ <td>0.242</td>
+ <td><span style="color:green">57.1%</span></td>
+ </tr>
+
+</tbody>
+</table>
+
+<sub><sup>All metrics were evaluated for k@20 after training for 5 epochs using the Adam optimizer with learning rates of 1e-4 for ResNet, 1e-7 for CLIP and 1e-5 for the BERT models, 5e-4 for PointNet++</sup></sub>
+
+<!-- start install-instruction -->
+
+## Install
+
+Make sure you have Python 3.8+ installed. Finetuner can be installed via `pip` by executing:
+
+```bash
+pip install -U finetuner
+```
+
+If you want to encode `docarray.DocumentArray` objects with the `finetuner.encode` function, you need to install
+`"finetuner[full]"`. This includes a number of additional dependencies, which are necessary for encoding: Torch,
+Torchvision and OpenCLIP:
+
+```bash
+pip install "finetuner[full]"
+```
+
+<!-- end install-instruction -->
+
+> ⚠️ Starting with version 0.5.0, Finetuner computing is performed on Jina AI Cloud. The last local version is `0.4.1`.
+> This version is still available for installation via `pip`. See [Finetuner git tags and releases](https://github.com/jina-ai/finetuner/releases).
+
+<!-- start finetuner-articles -->
+## Articles about Finetuner
+
+Check out our published blogposts and tutorials to see Finetuner in action!
+
+- [Fine-tuning with Low Budget and High Expectations](https://jina.ai/news/fine-tuning-with-low-budget-and-high-expectations/)
+- [Hype and Hybrids: Search is more than Keywords and Vectors](https://jina.ai/news/hype-and-hybrids-multimodal-search-means-more-than-keywords-and-vectors-2/)
+- [Improving Search Quality for Non-English Queries with Fine-tuned Multilingual CLIP Models](https://jina.ai/news/improving-search-quality-non-english-queries-fine-tuned-multilingual-clip-models/)
+- [How Much Do We Get by Finetuning CLIP?](https://jina.ai/news/applying-jina-ai-finetuner-to-clip-less-data-smaller-models-higher-performance/)
+
+<!-- end finetuner-articles -->
+
+<!-- start support-pitch -->
+## Support
+
+- Use [Discussions](https://github.com/jina-ai/finetuner/discussions) to talk about your use cases, questions, and
+ support queries.
+- Join our [Slack community](https://slack.jina.ai) and chat with other Jina AI community members about ideas.
+- Join our [Engineering All Hands](https://youtube.com/playlist?list=PL3UBBWOUVhFYRUa_gpYYKBqEAkO4sxmne) meet-up to discuss your use case and learn Jina AI new features.
+ - **When?** The second Tuesday of every month
+ - **Where?**
+ Zoom ([see our public events calendar](https://calendar.google.com/calendar/embed?src=c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com&ctz=Europe%2FBerlin)/[.ical](https://calendar.google.com/calendar/ical/c_1t5ogfp2d45v8fit981j08mcm4%40group.calendar.google.com/public/basic.ics))
+ and [live stream on YouTube](https://youtube.com/c/jina-ai)
+- Subscribe to the latest video tutorials on our [YouTube channel](https://youtube.com/c/jina-ai)
+
+## Join Us
+
+Finetuner is backed by [Jina AI](https://jina.ai) and licensed under [Apache-2.0](./LICENSE).
+
+[We are actively hiring](https://jobs.jina.ai) AI engineers and solution engineers to build the next generation of
+open-source AI ecosystems.
+
+<!-- end support-pitch -->
+
+%prep
+%autosetup -n finetuner-0.7.6
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-finetuner -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.7.6-1
+- Package Spec generated