summaryrefslogtreecommitdiff
path: root/python-fitsio.spec
blob: da47fe8e7c62255878026e040163bb4096c1826e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
%global _empty_manifest_terminate_build 0
Name:		python-fitsio
Version:	1.1.8
Release:	1
Summary:	A full featured python library to read from and write to FITS files.
License:	GPL
URL:		https://github.com/esheldon/fitsio
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/1f/0e/b312ff3f6b588c13fc2256a5df4c4d63c527a07e176012d0593136af53ee/fitsio-1.1.8.tar.gz
BuildArch:	noarch


%description
A python library to read from and write to FITS files.

[![Build Status (master)](https://travis-ci.com/esheldon/fitsio.svg?branch=master)](https://travis-ci.com/esheldon/fitsio)
[![tests](https://github.com/esheldon/fitsio/workflows/tests/badge.svg)](https://github.com/esheldon/fitsio/actions?query=workflow%3Atests)

## Description

This is a python extension written in c and python.  Data are read into
numerical python arrays.

A version of cfitsio is bundled with this package, there is no need to install
your own, nor will this conflict with a version you have installed.


## Some Features

- Read from and write to image, binary, and ascii table extensions.
- Read arbitrary subsets of table columns and rows without loading all the data
  to memory.
- Read image subsets without reading the whole image.  Write subsets to existing images.
- Write and read variable length table columns.
- Read images and tables using slice notation similar to numpy arrays.  This is like a more
  powerful memmap, since it is column-aware for tables.
- Append rows to an existing table.  Delete row sets and row ranges. Resize tables,
    or insert rows.
- Query the columns and rows in a table.
- Read and write header keywords.
- Read and write images in tile-compressed format (RICE,GZIP,PLIO,HCOMPRESS).
- Read/write gzip files directly.  Read unix compress (.Z,.zip) and bzip2 (.bz2) files.
- TDIM information is used to return array columns in the correct shape.
- Write and read string table columns, including array columns of arbitrary
  shape.
- Read and write complex, bool (logical), unsigned integer, signed bytes types.
- Write checksums into the header and verify them.
- Insert new columns into tables in-place.
- Iterate over rows in a table.  Data are buffered for efficiency.
- python 3 support, including python 3 strings


## Examples

```python
import fitsio
from fitsio import FITS,FITSHDR

# Often you just want to quickly read or write data without bothering to
# create a FITS object.  In that case, you can use the read and write
# convienience functions.

# read all data from the first hdu that has data
filename='data.fits'
data = fitsio.read(filename)

# read a subset of rows and columns from a table
data = fitsio.read(filename, rows=[35,1001], columns=['x','y'], ext=2)

# read the header
h = fitsio.read_header(filename)
# read both data and header
data,h = fitsio.read(filename, header=True)

# open the file and write a new binary table extension with the data
# array, which is a numpy array with fields, or "recarray".

data = np.zeros(10, dtype=[('id','i8'),('ra','f8'),('dec','f8')])
fitsio.write(filename, data)

# Write an image to the same file. By default a new extension is
# added to the file.  use clobber=True to overwrite an existing file
# instead.  To append rows to an existing table, see below.

fitsio.write(filename, image)

# NOTE when reading row subsets, the data must still be read from disk.
# This is most efficient if the data are read in the order they appear in
# the file.  For this reason, the rows are always returned in row-sorted
# order.

#
# the FITS class gives the you the ability to explore the data, and gives
# more control
#

# open a FITS file for reading and explore
fits=fitsio.FITS('data.fits')

# see what is in here; the FITS object prints itself
print(fits)

file: data.fits
mode: READONLY
extnum hdutype         hduname
0      IMAGE_HDU
1      BINARY_TBL      mytable

# at the python or ipython prompt the fits object will
# print itself
>>> fits
file: data.fits
... etc

# explore the extensions, either by extension number or
# extension name if available
>>> fits[0]

file: data.fits
extension: 0
type: IMAGE_HDU
image info:
  data type: f8
  dims: [4096,2048]

# by name; can also use fits[1]
>>> fits['mytable']

file: data.fits
extension: 1
type: BINARY_TBL
extname: mytable
rows: 4328342
column info:
  i1scalar            u1
  f                   f4
  fvec                f4  array[2]
  darr                f8  array[3,2]
  dvarr               f8  varray[10]
  s                   S5
  svec                S6  array[3]
  svar                S0  vstring[8]
  sarr                S2  array[4,3]

# See bottom for how to get more information for an extension

# [-1] to refers the last HDU
>>> fits[-1]
...

# if there are multiple HDUs with the same name, and an EXTVER
# is set, you can use it.  Here extver=2
#    fits['mytable',2]


# read the image from extension zero
img = fits[0].read()
img = fits[0][:,:]

# read a subset of the image without reading the whole image
img = fits[0][25:35, 45:55]


# read all rows and columns from a binary table extension
data = fits[1].read()
data = fits['mytable'].read()
data = fits[1][:]

# read a subset of rows and columns. By default uses a case-insensitive
# match. The result retains the names with original case.  If columns is a
# sequence, a numpy array with fields, or recarray is returned
data = fits[1].read(rows=[1,5], columns=['index','x','y'])

# Similar but using slice notation
# row subsets
data = fits[1][10:20]
data = fits[1][10:20:2]
data = fits[1][[1,5,18]]

# Using EXTNAME and EXTVER values
data = fits['SCI',2][10:20]

# Slicing with reverse (flipped) striding
data = fits[1][40:25]
data = fits[1][40:25:-5]

# all rows of column 'x'
data = fits[1]['x'][:]

# Read a few columns at once. This is more efficient than separate read for
# each column
data = fits[1]['x','y'][:]

# General column and row subsets.  As noted above, the data are returned
# in row sorted order for efficiency reasons.
columns=['index','x','y']
rows=[1,5]
data = fits[1][columns][rows]

# iterate over rows in a table hdu
# faster if we buffer some rows, let's buffer 1000 at a time
fits=fitsio.FITS(filename,iter_row_buffer=1000)
for row in fits[1]:
    print(row)

# iterate over HDUs in a FITS object
for hdu in fits:
    data=hdu.read()

# Note dvarr shows type varray[10] and svar shows type vstring[8]. These
# are variable length columns and the number specified is the maximum size.
# By default they are read into fixed-length fields in the output array.
# You can over-ride this by constructing the FITS object with the vstorage
# keyword or specifying vstorage when reading.  Sending vstorage='object'
# will store the data in variable size object fields to save memory; the
# default is vstorage='fixed'.  Object fields can also be written out to a
# new FITS file as variable length to save disk space.

fits = fitsio.FITS(filename,vstorage='object')
# OR
data = fits[1].read(vstorage='object')
print(data['dvarr'].dtype)
    dtype('object')


# you can grab a FITS HDU object to simplify notation
hdu1 = fits[1]
data = hdu1['x','y'][35:50]

# get rows that satisfy the input expression.  See "Row Filtering
# Specification" in the cfitsio manual (note no temporary table is
# created in this case, contrary to the cfitsio docs)
w=fits[1].where("x > 0.25 && y < 35.0")
data = fits[1][w]

# read the header
h = fits[0].read_header()
print(h['BITPIX'])
    -64

fits.close()


# now write some data
fits = FITS('test.fits','rw')


# create a rec array.  Note vstr
# is a variable length string
nrows=35
data = np.zeros(nrows, dtype=[('index','i4'),('vstr','O'),('x','f8'),
                              ('arr','f4',(3,4))])
data['index'] = np.arange(nrows,dtype='i4')
data['x'] = np.random.random(nrows)
data['vstr'] = [str(i) for i in xrange(nrows)]
data['arr'] = np.arange(nrows*3*4,dtype='f4').reshape(nrows,3,4)

# create a new table extension and write the data
fits.write(data)

# can also be a list of ordinary arrays if you send the names
array_list=[xarray,yarray,namearray]
names=['x','y','name']
fits.write(array_list, names=names)

# similarly a dict of arrays
fits.write(dict_of_arrays)
fits.write(dict_of_arrays, names=names) # control name order

# append more rows to the table.  The fields in data2 should match columns
# in the table.  missing columns will be filled with zeros
fits[-1].append(data2)

# insert a new column into a table
fits[-1].insert_column('newcol', data)

# insert with a specific colnum
fits[-1].insert_column('newcol', data, colnum=2)

# overwrite rows
fits[-1].write(data)

# overwrite starting at a particular row. The table will grow if needed
fits[-1].write(data, firstrow=350)


# create an image
img=np.arange(2*3,dtype='i4').reshape(2,3)

# write an image in a new HDU (if this is a new file, the primary HDU)
fits.write(img)

# write an image with rice compression
fits.write(img, compress='rice')

# control the compression
fimg=np.random.normal(size=2*3).reshape(2, 3)
fits.write(img, compress='rice', qlevel=16, qmethod='SUBTRACTIVE_DITHER_2')

# lossless gzip compression for integers or floating point
fits.write(img, compress='gzip', qlevel=None)
fits.write(fimg, compress='gzip', qlevel=None)

# overwrite the image
fits[ext].write(img2)

# write into an existing image, starting at the location [300,400]
# the image will be expanded if needed
fits[ext].write(img3, start=[300,400])

# change the shape of the image on disk
fits[ext].reshape([250,100])

# add checksums for the data
fits[-1].write_checksum()

# can later verify data integridy
fits[-1].verify_checksum()

# you can also write a header at the same time.  The header can be
#   - a simple dict (no comments)
#   - a list of dicts with 'name','value','comment' fields
#   - a FITSHDR object

hdict = {'somekey': 35, 'location': 'kitt peak'}
fits.write(data, header=hdict)
hlist = [{'name':'observer', 'value':'ES', 'comment':'who'},
         {'name':'location','value':'CTIO'},
         {'name':'photometric','value':True}]
fits.write(data, header=hlist)
hdr=FITSHDR(hlist)
fits.write(data, header=hdr)

# you can add individual keys to an existing HDU
fits[1].write_key(name, value, comment="my comment")

# Write multiple header keys to an existing HDU. Here records
# is the same as sent with header= above
fits[1].write_keys(records)

# write special COMMENT fields
fits[1].write_comment("observer JS")
fits[1].write_comment("we had good weather")

# write special history fields
fits[1].write_history("processed with software X")
fits[1].write_history("re-processed with software Y")

fits.close()

# using a context, the file is closed automatically after leaving the block
with FITS('path/to/file') as fits:
    data = fits[ext].read()

    # you can check if a header exists using "in":
    if 'blah' in fits:
        data=fits['blah'].read()
    if 2 in f:
        data=fits[2].read()

# methods to get more information about extension.  For extension 1:
f[1].get_info()             # lots of info about the extension
f[1].has_data()             # returns True if data is present in extension
f[1].get_extname()
f[1].get_extver()
f[1].get_extnum()           # return zero-offset extension number
f[1].get_exttype()          # 'BINARY_TBL' or 'ASCII_TBL' or 'IMAGE_HDU'
f[1].get_offsets()          # byte offsets (header_start, data_start, data_end)
f[1].is_compressed()        # for images. True if tile-compressed
f[1].get_colnames()         # for tables
f[1].get_colname(colnum)    # for tables find the name from column number
f[1].get_nrows()            # for tables
f[1].get_rec_dtype()        # for tables
f[1].get_rec_column_descr() # for tables
f[1].get_vstorage()         # for tables, storage mechanism for variable
                            # length columns

# public attributes you can feel free to change as needed
f[1].lower           # If True, lower case colnames on output
f[1].upper           # If True, upper case colnames on output
f[1].case_sensitive  # if True, names are matched case sensitive
```


## Installation

The easiest way is using pip or conda. To get the latest release

    pip install fitsio

    # update fitsio (and everything else)
    pip install fitsio --upgrade

    # if pip refuses to update to a newer version
    pip install fitsio --upgrade --ignore-installed

    # if you only want to upgrade fitsio
    pip install fitsio --no-deps --upgrade --ignore-installed

    # for conda, use conda-forge
    conda install -c conda-forge fitsio

You can also get the latest source tarball release from

    https://pypi.python.org/pypi/fitsio

or the bleeding edge source from github or use git. To check out
the code for the first time

    git clone https://github.com/esheldon/fitsio.git

Or at a later time to update to the latest

    cd fitsio
    git update

Use tar xvfz to untar the file, enter the fitsio directory and type

    python setup.py install

optionally with a prefix

    python setup.py install --prefix=/some/path

## Requirements

- python 2 or python 3
- a C compiler and build tools like `make`, `patch`, etc.
- numpy (See the note below. Generally, numpy 1.11 or later is better.)


### Do not use numpy 1.10.0 or 1.10.1

There is a serious performance regression in numpy 1.10 that results
in fitsio running tens to hundreds of times slower.  A fix may be
forthcoming in a later release.  Please comment here if this
has already impacted your work https://github.com/numpy/numpy/issues/6467


## Tests

The unit tests should all pass for full support.

```bash
python -c "import fitsio; fitsio.test.test()"
```

Some tests may fail if certain libraries are not available, such
as bzip2.  This failure only implies that bzipped files cannot
be read, without affecting other functionality.

## Notes on Usage and Features

### cfitsio bundling

We bundle cfitsio partly because many deployed versions of cfitsio in the
wild do not have support for interesting features like tiled image compression.
Bundling a version that meets our needs is a safe alternative.

### array ordering

Since numpy uses C order, FITS uses fortran order, we have to write the TDIM
and image dimensions in reverse order, but write the data as is.  Then we need
to also reverse the dims as read from the header when creating the numpy dtype,
but read as is.

### `distutils` vs `setuptools`

As of version `1.0.0`, `fitsio` has been transitioned to `setuptools` for packaging
and installation. There are many reasons to do this (and to not do this). However,
at a practical level, what this means for you is that you may have trouble uninstalling
older versions with `pip` via `pip uninstall fitsio`. If you do, the best thing to do is
to manually remove the files manually. See this [stackoverflow question](https://stackoverflow.com/questions/402359/how-do-you-uninstall-a-python-package-that-was-installed-using-distutils)
for example.

### python 3 strings

As of version `1.0.0`, fitsio now supports Python 3 strings natively. This support
means that for Python 3, native strings are read from and written correctly to
FITS files. All byte string columns are treated as ASCII-encoded unicode strings
as well. For FITS files written with a previous version of fitsio, the data
in Python 3 will now come back as a string and not a byte string. Note that this
support is not the same as full unicode support. Internally, fitsio only supports
the ASCII character set.

## TODO

- HDU groups: does anyone use these? If so open an issue!




%package -n python3-fitsio
Summary:	A full featured python library to read from and write to FITS files.
Provides:	python-fitsio
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-fitsio
A python library to read from and write to FITS files.

[![Build Status (master)](https://travis-ci.com/esheldon/fitsio.svg?branch=master)](https://travis-ci.com/esheldon/fitsio)
[![tests](https://github.com/esheldon/fitsio/workflows/tests/badge.svg)](https://github.com/esheldon/fitsio/actions?query=workflow%3Atests)

## Description

This is a python extension written in c and python.  Data are read into
numerical python arrays.

A version of cfitsio is bundled with this package, there is no need to install
your own, nor will this conflict with a version you have installed.


## Some Features

- Read from and write to image, binary, and ascii table extensions.
- Read arbitrary subsets of table columns and rows without loading all the data
  to memory.
- Read image subsets without reading the whole image.  Write subsets to existing images.
- Write and read variable length table columns.
- Read images and tables using slice notation similar to numpy arrays.  This is like a more
  powerful memmap, since it is column-aware for tables.
- Append rows to an existing table.  Delete row sets and row ranges. Resize tables,
    or insert rows.
- Query the columns and rows in a table.
- Read and write header keywords.
- Read and write images in tile-compressed format (RICE,GZIP,PLIO,HCOMPRESS).
- Read/write gzip files directly.  Read unix compress (.Z,.zip) and bzip2 (.bz2) files.
- TDIM information is used to return array columns in the correct shape.
- Write and read string table columns, including array columns of arbitrary
  shape.
- Read and write complex, bool (logical), unsigned integer, signed bytes types.
- Write checksums into the header and verify them.
- Insert new columns into tables in-place.
- Iterate over rows in a table.  Data are buffered for efficiency.
- python 3 support, including python 3 strings


## Examples

```python
import fitsio
from fitsio import FITS,FITSHDR

# Often you just want to quickly read or write data without bothering to
# create a FITS object.  In that case, you can use the read and write
# convienience functions.

# read all data from the first hdu that has data
filename='data.fits'
data = fitsio.read(filename)

# read a subset of rows and columns from a table
data = fitsio.read(filename, rows=[35,1001], columns=['x','y'], ext=2)

# read the header
h = fitsio.read_header(filename)
# read both data and header
data,h = fitsio.read(filename, header=True)

# open the file and write a new binary table extension with the data
# array, which is a numpy array with fields, or "recarray".

data = np.zeros(10, dtype=[('id','i8'),('ra','f8'),('dec','f8')])
fitsio.write(filename, data)

# Write an image to the same file. By default a new extension is
# added to the file.  use clobber=True to overwrite an existing file
# instead.  To append rows to an existing table, see below.

fitsio.write(filename, image)

# NOTE when reading row subsets, the data must still be read from disk.
# This is most efficient if the data are read in the order they appear in
# the file.  For this reason, the rows are always returned in row-sorted
# order.

#
# the FITS class gives the you the ability to explore the data, and gives
# more control
#

# open a FITS file for reading and explore
fits=fitsio.FITS('data.fits')

# see what is in here; the FITS object prints itself
print(fits)

file: data.fits
mode: READONLY
extnum hdutype         hduname
0      IMAGE_HDU
1      BINARY_TBL      mytable

# at the python or ipython prompt the fits object will
# print itself
>>> fits
file: data.fits
... etc

# explore the extensions, either by extension number or
# extension name if available
>>> fits[0]

file: data.fits
extension: 0
type: IMAGE_HDU
image info:
  data type: f8
  dims: [4096,2048]

# by name; can also use fits[1]
>>> fits['mytable']

file: data.fits
extension: 1
type: BINARY_TBL
extname: mytable
rows: 4328342
column info:
  i1scalar            u1
  f                   f4
  fvec                f4  array[2]
  darr                f8  array[3,2]
  dvarr               f8  varray[10]
  s                   S5
  svec                S6  array[3]
  svar                S0  vstring[8]
  sarr                S2  array[4,3]

# See bottom for how to get more information for an extension

# [-1] to refers the last HDU
>>> fits[-1]
...

# if there are multiple HDUs with the same name, and an EXTVER
# is set, you can use it.  Here extver=2
#    fits['mytable',2]


# read the image from extension zero
img = fits[0].read()
img = fits[0][:,:]

# read a subset of the image without reading the whole image
img = fits[0][25:35, 45:55]


# read all rows and columns from a binary table extension
data = fits[1].read()
data = fits['mytable'].read()
data = fits[1][:]

# read a subset of rows and columns. By default uses a case-insensitive
# match. The result retains the names with original case.  If columns is a
# sequence, a numpy array with fields, or recarray is returned
data = fits[1].read(rows=[1,5], columns=['index','x','y'])

# Similar but using slice notation
# row subsets
data = fits[1][10:20]
data = fits[1][10:20:2]
data = fits[1][[1,5,18]]

# Using EXTNAME and EXTVER values
data = fits['SCI',2][10:20]

# Slicing with reverse (flipped) striding
data = fits[1][40:25]
data = fits[1][40:25:-5]

# all rows of column 'x'
data = fits[1]['x'][:]

# Read a few columns at once. This is more efficient than separate read for
# each column
data = fits[1]['x','y'][:]

# General column and row subsets.  As noted above, the data are returned
# in row sorted order for efficiency reasons.
columns=['index','x','y']
rows=[1,5]
data = fits[1][columns][rows]

# iterate over rows in a table hdu
# faster if we buffer some rows, let's buffer 1000 at a time
fits=fitsio.FITS(filename,iter_row_buffer=1000)
for row in fits[1]:
    print(row)

# iterate over HDUs in a FITS object
for hdu in fits:
    data=hdu.read()

# Note dvarr shows type varray[10] and svar shows type vstring[8]. These
# are variable length columns and the number specified is the maximum size.
# By default they are read into fixed-length fields in the output array.
# You can over-ride this by constructing the FITS object with the vstorage
# keyword or specifying vstorage when reading.  Sending vstorage='object'
# will store the data in variable size object fields to save memory; the
# default is vstorage='fixed'.  Object fields can also be written out to a
# new FITS file as variable length to save disk space.

fits = fitsio.FITS(filename,vstorage='object')
# OR
data = fits[1].read(vstorage='object')
print(data['dvarr'].dtype)
    dtype('object')


# you can grab a FITS HDU object to simplify notation
hdu1 = fits[1]
data = hdu1['x','y'][35:50]

# get rows that satisfy the input expression.  See "Row Filtering
# Specification" in the cfitsio manual (note no temporary table is
# created in this case, contrary to the cfitsio docs)
w=fits[1].where("x > 0.25 && y < 35.0")
data = fits[1][w]

# read the header
h = fits[0].read_header()
print(h['BITPIX'])
    -64

fits.close()


# now write some data
fits = FITS('test.fits','rw')


# create a rec array.  Note vstr
# is a variable length string
nrows=35
data = np.zeros(nrows, dtype=[('index','i4'),('vstr','O'),('x','f8'),
                              ('arr','f4',(3,4))])
data['index'] = np.arange(nrows,dtype='i4')
data['x'] = np.random.random(nrows)
data['vstr'] = [str(i) for i in xrange(nrows)]
data['arr'] = np.arange(nrows*3*4,dtype='f4').reshape(nrows,3,4)

# create a new table extension and write the data
fits.write(data)

# can also be a list of ordinary arrays if you send the names
array_list=[xarray,yarray,namearray]
names=['x','y','name']
fits.write(array_list, names=names)

# similarly a dict of arrays
fits.write(dict_of_arrays)
fits.write(dict_of_arrays, names=names) # control name order

# append more rows to the table.  The fields in data2 should match columns
# in the table.  missing columns will be filled with zeros
fits[-1].append(data2)

# insert a new column into a table
fits[-1].insert_column('newcol', data)

# insert with a specific colnum
fits[-1].insert_column('newcol', data, colnum=2)

# overwrite rows
fits[-1].write(data)

# overwrite starting at a particular row. The table will grow if needed
fits[-1].write(data, firstrow=350)


# create an image
img=np.arange(2*3,dtype='i4').reshape(2,3)

# write an image in a new HDU (if this is a new file, the primary HDU)
fits.write(img)

# write an image with rice compression
fits.write(img, compress='rice')

# control the compression
fimg=np.random.normal(size=2*3).reshape(2, 3)
fits.write(img, compress='rice', qlevel=16, qmethod='SUBTRACTIVE_DITHER_2')

# lossless gzip compression for integers or floating point
fits.write(img, compress='gzip', qlevel=None)
fits.write(fimg, compress='gzip', qlevel=None)

# overwrite the image
fits[ext].write(img2)

# write into an existing image, starting at the location [300,400]
# the image will be expanded if needed
fits[ext].write(img3, start=[300,400])

# change the shape of the image on disk
fits[ext].reshape([250,100])

# add checksums for the data
fits[-1].write_checksum()

# can later verify data integridy
fits[-1].verify_checksum()

# you can also write a header at the same time.  The header can be
#   - a simple dict (no comments)
#   - a list of dicts with 'name','value','comment' fields
#   - a FITSHDR object

hdict = {'somekey': 35, 'location': 'kitt peak'}
fits.write(data, header=hdict)
hlist = [{'name':'observer', 'value':'ES', 'comment':'who'},
         {'name':'location','value':'CTIO'},
         {'name':'photometric','value':True}]
fits.write(data, header=hlist)
hdr=FITSHDR(hlist)
fits.write(data, header=hdr)

# you can add individual keys to an existing HDU
fits[1].write_key(name, value, comment="my comment")

# Write multiple header keys to an existing HDU. Here records
# is the same as sent with header= above
fits[1].write_keys(records)

# write special COMMENT fields
fits[1].write_comment("observer JS")
fits[1].write_comment("we had good weather")

# write special history fields
fits[1].write_history("processed with software X")
fits[1].write_history("re-processed with software Y")

fits.close()

# using a context, the file is closed automatically after leaving the block
with FITS('path/to/file') as fits:
    data = fits[ext].read()

    # you can check if a header exists using "in":
    if 'blah' in fits:
        data=fits['blah'].read()
    if 2 in f:
        data=fits[2].read()

# methods to get more information about extension.  For extension 1:
f[1].get_info()             # lots of info about the extension
f[1].has_data()             # returns True if data is present in extension
f[1].get_extname()
f[1].get_extver()
f[1].get_extnum()           # return zero-offset extension number
f[1].get_exttype()          # 'BINARY_TBL' or 'ASCII_TBL' or 'IMAGE_HDU'
f[1].get_offsets()          # byte offsets (header_start, data_start, data_end)
f[1].is_compressed()        # for images. True if tile-compressed
f[1].get_colnames()         # for tables
f[1].get_colname(colnum)    # for tables find the name from column number
f[1].get_nrows()            # for tables
f[1].get_rec_dtype()        # for tables
f[1].get_rec_column_descr() # for tables
f[1].get_vstorage()         # for tables, storage mechanism for variable
                            # length columns

# public attributes you can feel free to change as needed
f[1].lower           # If True, lower case colnames on output
f[1].upper           # If True, upper case colnames on output
f[1].case_sensitive  # if True, names are matched case sensitive
```


## Installation

The easiest way is using pip or conda. To get the latest release

    pip install fitsio

    # update fitsio (and everything else)
    pip install fitsio --upgrade

    # if pip refuses to update to a newer version
    pip install fitsio --upgrade --ignore-installed

    # if you only want to upgrade fitsio
    pip install fitsio --no-deps --upgrade --ignore-installed

    # for conda, use conda-forge
    conda install -c conda-forge fitsio

You can also get the latest source tarball release from

    https://pypi.python.org/pypi/fitsio

or the bleeding edge source from github or use git. To check out
the code for the first time

    git clone https://github.com/esheldon/fitsio.git

Or at a later time to update to the latest

    cd fitsio
    git update

Use tar xvfz to untar the file, enter the fitsio directory and type

    python setup.py install

optionally with a prefix

    python setup.py install --prefix=/some/path

## Requirements

- python 2 or python 3
- a C compiler and build tools like `make`, `patch`, etc.
- numpy (See the note below. Generally, numpy 1.11 or later is better.)


### Do not use numpy 1.10.0 or 1.10.1

There is a serious performance regression in numpy 1.10 that results
in fitsio running tens to hundreds of times slower.  A fix may be
forthcoming in a later release.  Please comment here if this
has already impacted your work https://github.com/numpy/numpy/issues/6467


## Tests

The unit tests should all pass for full support.

```bash
python -c "import fitsio; fitsio.test.test()"
```

Some tests may fail if certain libraries are not available, such
as bzip2.  This failure only implies that bzipped files cannot
be read, without affecting other functionality.

## Notes on Usage and Features

### cfitsio bundling

We bundle cfitsio partly because many deployed versions of cfitsio in the
wild do not have support for interesting features like tiled image compression.
Bundling a version that meets our needs is a safe alternative.

### array ordering

Since numpy uses C order, FITS uses fortran order, we have to write the TDIM
and image dimensions in reverse order, but write the data as is.  Then we need
to also reverse the dims as read from the header when creating the numpy dtype,
but read as is.

### `distutils` vs `setuptools`

As of version `1.0.0`, `fitsio` has been transitioned to `setuptools` for packaging
and installation. There are many reasons to do this (and to not do this). However,
at a practical level, what this means for you is that you may have trouble uninstalling
older versions with `pip` via `pip uninstall fitsio`. If you do, the best thing to do is
to manually remove the files manually. See this [stackoverflow question](https://stackoverflow.com/questions/402359/how-do-you-uninstall-a-python-package-that-was-installed-using-distutils)
for example.

### python 3 strings

As of version `1.0.0`, fitsio now supports Python 3 strings natively. This support
means that for Python 3, native strings are read from and written correctly to
FITS files. All byte string columns are treated as ASCII-encoded unicode strings
as well. For FITS files written with a previous version of fitsio, the data
in Python 3 will now come back as a string and not a byte string. Note that this
support is not the same as full unicode support. Internally, fitsio only supports
the ASCII character set.

## TODO

- HDU groups: does anyone use these? If so open an issue!




%package help
Summary:	Development documents and examples for fitsio
Provides:	python3-fitsio-doc
%description help
A python library to read from and write to FITS files.

[![Build Status (master)](https://travis-ci.com/esheldon/fitsio.svg?branch=master)](https://travis-ci.com/esheldon/fitsio)
[![tests](https://github.com/esheldon/fitsio/workflows/tests/badge.svg)](https://github.com/esheldon/fitsio/actions?query=workflow%3Atests)

## Description

This is a python extension written in c and python.  Data are read into
numerical python arrays.

A version of cfitsio is bundled with this package, there is no need to install
your own, nor will this conflict with a version you have installed.


## Some Features

- Read from and write to image, binary, and ascii table extensions.
- Read arbitrary subsets of table columns and rows without loading all the data
  to memory.
- Read image subsets without reading the whole image.  Write subsets to existing images.
- Write and read variable length table columns.
- Read images and tables using slice notation similar to numpy arrays.  This is like a more
  powerful memmap, since it is column-aware for tables.
- Append rows to an existing table.  Delete row sets and row ranges. Resize tables,
    or insert rows.
- Query the columns and rows in a table.
- Read and write header keywords.
- Read and write images in tile-compressed format (RICE,GZIP,PLIO,HCOMPRESS).
- Read/write gzip files directly.  Read unix compress (.Z,.zip) and bzip2 (.bz2) files.
- TDIM information is used to return array columns in the correct shape.
- Write and read string table columns, including array columns of arbitrary
  shape.
- Read and write complex, bool (logical), unsigned integer, signed bytes types.
- Write checksums into the header and verify them.
- Insert new columns into tables in-place.
- Iterate over rows in a table.  Data are buffered for efficiency.
- python 3 support, including python 3 strings


## Examples

```python
import fitsio
from fitsio import FITS,FITSHDR

# Often you just want to quickly read or write data without bothering to
# create a FITS object.  In that case, you can use the read and write
# convienience functions.

# read all data from the first hdu that has data
filename='data.fits'
data = fitsio.read(filename)

# read a subset of rows and columns from a table
data = fitsio.read(filename, rows=[35,1001], columns=['x','y'], ext=2)

# read the header
h = fitsio.read_header(filename)
# read both data and header
data,h = fitsio.read(filename, header=True)

# open the file and write a new binary table extension with the data
# array, which is a numpy array with fields, or "recarray".

data = np.zeros(10, dtype=[('id','i8'),('ra','f8'),('dec','f8')])
fitsio.write(filename, data)

# Write an image to the same file. By default a new extension is
# added to the file.  use clobber=True to overwrite an existing file
# instead.  To append rows to an existing table, see below.

fitsio.write(filename, image)

# NOTE when reading row subsets, the data must still be read from disk.
# This is most efficient if the data are read in the order they appear in
# the file.  For this reason, the rows are always returned in row-sorted
# order.

#
# the FITS class gives the you the ability to explore the data, and gives
# more control
#

# open a FITS file for reading and explore
fits=fitsio.FITS('data.fits')

# see what is in here; the FITS object prints itself
print(fits)

file: data.fits
mode: READONLY
extnum hdutype         hduname
0      IMAGE_HDU
1      BINARY_TBL      mytable

# at the python or ipython prompt the fits object will
# print itself
>>> fits
file: data.fits
... etc

# explore the extensions, either by extension number or
# extension name if available
>>> fits[0]

file: data.fits
extension: 0
type: IMAGE_HDU
image info:
  data type: f8
  dims: [4096,2048]

# by name; can also use fits[1]
>>> fits['mytable']

file: data.fits
extension: 1
type: BINARY_TBL
extname: mytable
rows: 4328342
column info:
  i1scalar            u1
  f                   f4
  fvec                f4  array[2]
  darr                f8  array[3,2]
  dvarr               f8  varray[10]
  s                   S5
  svec                S6  array[3]
  svar                S0  vstring[8]
  sarr                S2  array[4,3]

# See bottom for how to get more information for an extension

# [-1] to refers the last HDU
>>> fits[-1]
...

# if there are multiple HDUs with the same name, and an EXTVER
# is set, you can use it.  Here extver=2
#    fits['mytable',2]


# read the image from extension zero
img = fits[0].read()
img = fits[0][:,:]

# read a subset of the image without reading the whole image
img = fits[0][25:35, 45:55]


# read all rows and columns from a binary table extension
data = fits[1].read()
data = fits['mytable'].read()
data = fits[1][:]

# read a subset of rows and columns. By default uses a case-insensitive
# match. The result retains the names with original case.  If columns is a
# sequence, a numpy array with fields, or recarray is returned
data = fits[1].read(rows=[1,5], columns=['index','x','y'])

# Similar but using slice notation
# row subsets
data = fits[1][10:20]
data = fits[1][10:20:2]
data = fits[1][[1,5,18]]

# Using EXTNAME and EXTVER values
data = fits['SCI',2][10:20]

# Slicing with reverse (flipped) striding
data = fits[1][40:25]
data = fits[1][40:25:-5]

# all rows of column 'x'
data = fits[1]['x'][:]

# Read a few columns at once. This is more efficient than separate read for
# each column
data = fits[1]['x','y'][:]

# General column and row subsets.  As noted above, the data are returned
# in row sorted order for efficiency reasons.
columns=['index','x','y']
rows=[1,5]
data = fits[1][columns][rows]

# iterate over rows in a table hdu
# faster if we buffer some rows, let's buffer 1000 at a time
fits=fitsio.FITS(filename,iter_row_buffer=1000)
for row in fits[1]:
    print(row)

# iterate over HDUs in a FITS object
for hdu in fits:
    data=hdu.read()

# Note dvarr shows type varray[10] and svar shows type vstring[8]. These
# are variable length columns and the number specified is the maximum size.
# By default they are read into fixed-length fields in the output array.
# You can over-ride this by constructing the FITS object with the vstorage
# keyword or specifying vstorage when reading.  Sending vstorage='object'
# will store the data in variable size object fields to save memory; the
# default is vstorage='fixed'.  Object fields can also be written out to a
# new FITS file as variable length to save disk space.

fits = fitsio.FITS(filename,vstorage='object')
# OR
data = fits[1].read(vstorage='object')
print(data['dvarr'].dtype)
    dtype('object')


# you can grab a FITS HDU object to simplify notation
hdu1 = fits[1]
data = hdu1['x','y'][35:50]

# get rows that satisfy the input expression.  See "Row Filtering
# Specification" in the cfitsio manual (note no temporary table is
# created in this case, contrary to the cfitsio docs)
w=fits[1].where("x > 0.25 && y < 35.0")
data = fits[1][w]

# read the header
h = fits[0].read_header()
print(h['BITPIX'])
    -64

fits.close()


# now write some data
fits = FITS('test.fits','rw')


# create a rec array.  Note vstr
# is a variable length string
nrows=35
data = np.zeros(nrows, dtype=[('index','i4'),('vstr','O'),('x','f8'),
                              ('arr','f4',(3,4))])
data['index'] = np.arange(nrows,dtype='i4')
data['x'] = np.random.random(nrows)
data['vstr'] = [str(i) for i in xrange(nrows)]
data['arr'] = np.arange(nrows*3*4,dtype='f4').reshape(nrows,3,4)

# create a new table extension and write the data
fits.write(data)

# can also be a list of ordinary arrays if you send the names
array_list=[xarray,yarray,namearray]
names=['x','y','name']
fits.write(array_list, names=names)

# similarly a dict of arrays
fits.write(dict_of_arrays)
fits.write(dict_of_arrays, names=names) # control name order

# append more rows to the table.  The fields in data2 should match columns
# in the table.  missing columns will be filled with zeros
fits[-1].append(data2)

# insert a new column into a table
fits[-1].insert_column('newcol', data)

# insert with a specific colnum
fits[-1].insert_column('newcol', data, colnum=2)

# overwrite rows
fits[-1].write(data)

# overwrite starting at a particular row. The table will grow if needed
fits[-1].write(data, firstrow=350)


# create an image
img=np.arange(2*3,dtype='i4').reshape(2,3)

# write an image in a new HDU (if this is a new file, the primary HDU)
fits.write(img)

# write an image with rice compression
fits.write(img, compress='rice')

# control the compression
fimg=np.random.normal(size=2*3).reshape(2, 3)
fits.write(img, compress='rice', qlevel=16, qmethod='SUBTRACTIVE_DITHER_2')

# lossless gzip compression for integers or floating point
fits.write(img, compress='gzip', qlevel=None)
fits.write(fimg, compress='gzip', qlevel=None)

# overwrite the image
fits[ext].write(img2)

# write into an existing image, starting at the location [300,400]
# the image will be expanded if needed
fits[ext].write(img3, start=[300,400])

# change the shape of the image on disk
fits[ext].reshape([250,100])

# add checksums for the data
fits[-1].write_checksum()

# can later verify data integridy
fits[-1].verify_checksum()

# you can also write a header at the same time.  The header can be
#   - a simple dict (no comments)
#   - a list of dicts with 'name','value','comment' fields
#   - a FITSHDR object

hdict = {'somekey': 35, 'location': 'kitt peak'}
fits.write(data, header=hdict)
hlist = [{'name':'observer', 'value':'ES', 'comment':'who'},
         {'name':'location','value':'CTIO'},
         {'name':'photometric','value':True}]
fits.write(data, header=hlist)
hdr=FITSHDR(hlist)
fits.write(data, header=hdr)

# you can add individual keys to an existing HDU
fits[1].write_key(name, value, comment="my comment")

# Write multiple header keys to an existing HDU. Here records
# is the same as sent with header= above
fits[1].write_keys(records)

# write special COMMENT fields
fits[1].write_comment("observer JS")
fits[1].write_comment("we had good weather")

# write special history fields
fits[1].write_history("processed with software X")
fits[1].write_history("re-processed with software Y")

fits.close()

# using a context, the file is closed automatically after leaving the block
with FITS('path/to/file') as fits:
    data = fits[ext].read()

    # you can check if a header exists using "in":
    if 'blah' in fits:
        data=fits['blah'].read()
    if 2 in f:
        data=fits[2].read()

# methods to get more information about extension.  For extension 1:
f[1].get_info()             # lots of info about the extension
f[1].has_data()             # returns True if data is present in extension
f[1].get_extname()
f[1].get_extver()
f[1].get_extnum()           # return zero-offset extension number
f[1].get_exttype()          # 'BINARY_TBL' or 'ASCII_TBL' or 'IMAGE_HDU'
f[1].get_offsets()          # byte offsets (header_start, data_start, data_end)
f[1].is_compressed()        # for images. True if tile-compressed
f[1].get_colnames()         # for tables
f[1].get_colname(colnum)    # for tables find the name from column number
f[1].get_nrows()            # for tables
f[1].get_rec_dtype()        # for tables
f[1].get_rec_column_descr() # for tables
f[1].get_vstorage()         # for tables, storage mechanism for variable
                            # length columns

# public attributes you can feel free to change as needed
f[1].lower           # If True, lower case colnames on output
f[1].upper           # If True, upper case colnames on output
f[1].case_sensitive  # if True, names are matched case sensitive
```


## Installation

The easiest way is using pip or conda. To get the latest release

    pip install fitsio

    # update fitsio (and everything else)
    pip install fitsio --upgrade

    # if pip refuses to update to a newer version
    pip install fitsio --upgrade --ignore-installed

    # if you only want to upgrade fitsio
    pip install fitsio --no-deps --upgrade --ignore-installed

    # for conda, use conda-forge
    conda install -c conda-forge fitsio

You can also get the latest source tarball release from

    https://pypi.python.org/pypi/fitsio

or the bleeding edge source from github or use git. To check out
the code for the first time

    git clone https://github.com/esheldon/fitsio.git

Or at a later time to update to the latest

    cd fitsio
    git update

Use tar xvfz to untar the file, enter the fitsio directory and type

    python setup.py install

optionally with a prefix

    python setup.py install --prefix=/some/path

## Requirements

- python 2 or python 3
- a C compiler and build tools like `make`, `patch`, etc.
- numpy (See the note below. Generally, numpy 1.11 or later is better.)


### Do not use numpy 1.10.0 or 1.10.1

There is a serious performance regression in numpy 1.10 that results
in fitsio running tens to hundreds of times slower.  A fix may be
forthcoming in a later release.  Please comment here if this
has already impacted your work https://github.com/numpy/numpy/issues/6467


## Tests

The unit tests should all pass for full support.

```bash
python -c "import fitsio; fitsio.test.test()"
```

Some tests may fail if certain libraries are not available, such
as bzip2.  This failure only implies that bzipped files cannot
be read, without affecting other functionality.

## Notes on Usage and Features

### cfitsio bundling

We bundle cfitsio partly because many deployed versions of cfitsio in the
wild do not have support for interesting features like tiled image compression.
Bundling a version that meets our needs is a safe alternative.

### array ordering

Since numpy uses C order, FITS uses fortran order, we have to write the TDIM
and image dimensions in reverse order, but write the data as is.  Then we need
to also reverse the dims as read from the header when creating the numpy dtype,
but read as is.

### `distutils` vs `setuptools`

As of version `1.0.0`, `fitsio` has been transitioned to `setuptools` for packaging
and installation. There are many reasons to do this (and to not do this). However,
at a practical level, what this means for you is that you may have trouble uninstalling
older versions with `pip` via `pip uninstall fitsio`. If you do, the best thing to do is
to manually remove the files manually. See this [stackoverflow question](https://stackoverflow.com/questions/402359/how-do-you-uninstall-a-python-package-that-was-installed-using-distutils)
for example.

### python 3 strings

As of version `1.0.0`, fitsio now supports Python 3 strings natively. This support
means that for Python 3, native strings are read from and written correctly to
FITS files. All byte string columns are treated as ASCII-encoded unicode strings
as well. For FITS files written with a previous version of fitsio, the data
in Python 3 will now come back as a string and not a byte string. Note that this
support is not the same as full unicode support. Internally, fitsio only supports
the ASCII character set.

## TODO

- HDU groups: does anyone use these? If so open an issue!




%prep
%autosetup -n fitsio-1.1.8

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-fitsio -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Mar 09 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.8-1
- Package Spec generated