diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-05 11:14:08 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 11:14:08 +0000 |
commit | be051c0a5fb5aa32f9412ae50d6c5c9eaab4767f (patch) | |
tree | 507dd6432a3cd44bd5771ea9fcbe384021136237 | |
parent | f783f0c534d4e3520d09e8ee053a7bcf7cef5254 (diff) |
automatic import of python-flwropeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-flwr.spec | 550 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 552 insertions, 0 deletions
@@ -0,0 +1 @@ +/flwr-1.4.0.tar.gz diff --git a/python-flwr.spec b/python-flwr.spec new file mode 100644 index 0000000..58d06eb --- /dev/null +++ b/python-flwr.spec @@ -0,0 +1,550 @@ +%global _empty_manifest_terminate_build 0 +Name: python-flwr +Version: 1.4.0 +Release: 1 +Summary: Flower: A Friendly Federated Learning Framework +License: Apache-2.0 +URL: https://flower.dev +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e9/91/c93ccd0a61c91315cbc57c100adfe08533ec4ed19feebbb80cb3f5747740/flwr-1.4.0.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-grpcio +Requires: python3-protobuf +Requires: python3-importlib-metadata +Requires: python3-iterators +Requires: python3-ray[default] +Requires: python3-requests +Requires: python3-fastapi +Requires: python3-starlette +Requires: python3-uvicorn[standard] + +%description +# Flower: A Friendly Federated Learning Framework + +<p align="center"> + <a href="https://flower.dev/"> + <img src="https://flower.dev/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fflower_white_border.c2012e70.png&w=640&q=75" width="140px" alt="Flower Website" /> + </a> +</p> +<p align="center"> + <a href="https://flower.dev/">Website</a> | + <a href="https://flower.dev/blog">Blog</a> | + <a href="https://flower.dev/docs/">Docs</a> | + <a href="https://flower.dev/conf/flower-summit-2022">Conference</a> | + <a href="https://flower.dev/join-slack">Slack</a> + <br /><br /> +</p> + +[](https://github.com/adap/flower/blob/main/LICENSE) +[](https://github.com/adap/flower/blob/main/CONTRIBUTING.md) + + +[](https://flower.dev/join-slack) + +Flower (`flwr`) is a framework for building federated learning systems. The +design of Flower is based on a few guiding principles: + +* **Customizable**: Federated learning systems vary wildly from one use case to + another. Flower allows for a wide range of different configurations depending + on the needs of each individual use case. + +* **Extendable**: Flower originated from a research project at the University of + Oxford, so it was built with AI research in mind. Many components can be + extended and overridden to build new state-of-the-art systems. + +* **Framework-agnostic**: Different machine learning frameworks have different + strengths. Flower can be used with any machine learning framework, for + example, [PyTorch](https://pytorch.org), + [TensorFlow](https://tensorflow.org), [Hugging Face Transformers](https://huggingface.co/), [PyTorch Lightning](https://pytorchlightning.ai/), [MXNet](https://mxnet.apache.org/), [scikit-learn](https://scikit-learn.org/), [JAX](https://jax.readthedocs.io/), [TFLite](https://tensorflow.org/lite/), [fastai](https://www.fast.ai/), [Pandas](https://pandas.pydata.org/ +) for federated analytics, or even raw [NumPy](https://numpy.org/) + for users who enjoy computing gradients by hand. + +* **Understandable**: Flower is written with maintainability in mind. The + community is encouraged to both read and contribute to the codebase. + +Meet the Flower community on [flower.dev](https://flower.dev)! + +## Federated Learning Tutorial + +Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower. + +0. **What is Federated Learning?** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb)) + +1. **An Introduction to Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb)) + +2. **Using Strategies in Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb)) + +3. **Building Strategies for Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb)) + +4. **Custom Clients for Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb)) + +Stay tuned, more tutorials are coming soon. Topics include **Privacy and Security in Federated Learning**, and **Scaling Federated Learning**. + +## Documentation + +[Flower Docs](https://flower.dev/docs): +* [Installation](https://flower.dev/docs/installation.html) +* [Quickstart (TensorFlow)](https://flower.dev/docs/quickstart-tensorflow.html) +* [Quickstart (PyTorch)](https://flower.dev/docs/quickstart-pytorch.html) +* [Quickstart (Hugging Face [code example])](https://flower.dev/docs/quickstart-huggingface.html) +* [Quickstart (PyTorch Lightning [code example])](https://flower.dev/docs/quickstart-pytorch-lightning.html) +* [Quickstart (MXNet)](https://flower.dev/docs/example-mxnet-walk-through.html) +* [Quickstart (Pandas)](https://flower.dev/docs/quickstart-pandas.html) +* [Quickstart (fastai)](https://flower.dev/docs/quickstart-fastai.html) +* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax) +* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist) +* [Quickstart (TFLite on Android [code example])](https://github.com/adap/flower/tree/main/examples/android) + +## Flower Baselines + +Flower Baselines is a collection of community-contributed experiments that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas: + +* [FedAvg](https://arxiv.org/abs/1602.05629): + * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedavg_mnist) +* [FedProx](https://arxiv.org/abs/1812.06127): + * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedprox_mnist) +* [FedBN: Federated Learning on non-IID Features via Local Batch Normalization](https://arxiv.org/abs/2102.07623): + * [Convergence Rate](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedbn/convergence_rate) +* [Adaptive Federated Optimization](https://arxiv.org/abs/2003.00295): + * [CIFAR-10/100](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/adaptive_federated_optimization) + +Check the Flower documentation to learn more: [Using Baselines](https://flower.dev/docs/using-baselines.html) + +The Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline: [Contributing Baselines](https://flower.dev/docs/contributing-baselines.html) + +## Flower Usage Examples + +Several code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow). + +Quickstart examples: + +* [Quickstart (TensorFlow)](https://github.com/adap/flower/tree/main/examples/quickstart_tensorflow) +* [Quickstart (PyTorch)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch) +* [Quickstart (Hugging Face)](https://github.com/adap/flower/tree/main/examples/quickstart_huggingface) +* [Quickstart (PyTorch Lightning)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch_lightning) +* [Quickstart (fastai)](https://github.com/adap/flower/tree/main/examples/quickstart_fastai) +* [Quickstart (Pandas)](https://github.com/adap/flower/tree/main/examples/quickstart_pandas) +* [Quickstart (MXNet)](https://github.com/adap/flower/tree/main/examples/quickstart_mxnet) +* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax) +* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist) +* [Quickstart (TFLite on Android)](https://github.com/adap/flower/tree/main/examples/android) + +Other [examples](https://github.com/adap/flower/tree/main/examples): + +* [Raspberry Pi & Nvidia Jetson Tutorial](https://github.com/adap/flower/tree/main/examples/embedded_devices) +* [Android & TFLite](https://github.com/adap/flower/tree/main/examples/android) +* [PyTorch: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/pytorch_from_centralized_to_federated) +* [MXNet: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/mxnet_from_centralized_to_federated) +* [Advanced Flower with TensorFlow/Keras](https://github.com/adap/flower/tree/main/examples/advanced_tensorflow) +* [Advanced Flower with PyTorch](https://github.com/adap/flower/tree/main/examples/advanced_pytorch) +* Single-Machine Simulation of Federated Learning Systems ([PyTorch](https://github.com/adap/flower/tree/main/examples/simulation_pytorch)) ([Tensorflow](https://github.com/adap/flower/tree/main/examples/simulation_tensorflow)) + +## Community + +Flower is built by a wonderful community of researchers and engineers. [Join Slack](https://flower.dev/join-slack) to meet them, [contributions](#contributing-to-flower) are welcome. + +<a href="https://github.com/adap/flower/graphs/contributors"> + <img src="https://contrib.rocks/image?repo=adap/flower" /> +</a> + +## Citation + +If you publish work that uses Flower, please cite Flower as follows: + +```bibtex +@article{beutel2020flower, + title={Flower: A Friendly Federated Learning Research Framework}, + author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D}, + journal={arXiv preprint arXiv:2007.14390}, + year={2020} +} +``` + +Please also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request. + +## Contributing to Flower + +We welcome contributions. Please see [CONTRIBUTING.md](CONTRIBUTING.md) to get started! + + +%package -n python3-flwr +Summary: Flower: A Friendly Federated Learning Framework +Provides: python-flwr +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-flwr +# Flower: A Friendly Federated Learning Framework + +<p align="center"> + <a href="https://flower.dev/"> + <img src="https://flower.dev/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fflower_white_border.c2012e70.png&w=640&q=75" width="140px" alt="Flower Website" /> + </a> +</p> +<p align="center"> + <a href="https://flower.dev/">Website</a> | + <a href="https://flower.dev/blog">Blog</a> | + <a href="https://flower.dev/docs/">Docs</a> | + <a href="https://flower.dev/conf/flower-summit-2022">Conference</a> | + <a href="https://flower.dev/join-slack">Slack</a> + <br /><br /> +</p> + +[](https://github.com/adap/flower/blob/main/LICENSE) +[](https://github.com/adap/flower/blob/main/CONTRIBUTING.md) + + +[](https://flower.dev/join-slack) + +Flower (`flwr`) is a framework for building federated learning systems. The +design of Flower is based on a few guiding principles: + +* **Customizable**: Federated learning systems vary wildly from one use case to + another. Flower allows for a wide range of different configurations depending + on the needs of each individual use case. + +* **Extendable**: Flower originated from a research project at the University of + Oxford, so it was built with AI research in mind. Many components can be + extended and overridden to build new state-of-the-art systems. + +* **Framework-agnostic**: Different machine learning frameworks have different + strengths. Flower can be used with any machine learning framework, for + example, [PyTorch](https://pytorch.org), + [TensorFlow](https://tensorflow.org), [Hugging Face Transformers](https://huggingface.co/), [PyTorch Lightning](https://pytorchlightning.ai/), [MXNet](https://mxnet.apache.org/), [scikit-learn](https://scikit-learn.org/), [JAX](https://jax.readthedocs.io/), [TFLite](https://tensorflow.org/lite/), [fastai](https://www.fast.ai/), [Pandas](https://pandas.pydata.org/ +) for federated analytics, or even raw [NumPy](https://numpy.org/) + for users who enjoy computing gradients by hand. + +* **Understandable**: Flower is written with maintainability in mind. The + community is encouraged to both read and contribute to the codebase. + +Meet the Flower community on [flower.dev](https://flower.dev)! + +## Federated Learning Tutorial + +Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower. + +0. **What is Federated Learning?** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb)) + +1. **An Introduction to Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb)) + +2. **Using Strategies in Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb)) + +3. **Building Strategies for Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb)) + +4. **Custom Clients for Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb)) + +Stay tuned, more tutorials are coming soon. Topics include **Privacy and Security in Federated Learning**, and **Scaling Federated Learning**. + +## Documentation + +[Flower Docs](https://flower.dev/docs): +* [Installation](https://flower.dev/docs/installation.html) +* [Quickstart (TensorFlow)](https://flower.dev/docs/quickstart-tensorflow.html) +* [Quickstart (PyTorch)](https://flower.dev/docs/quickstart-pytorch.html) +* [Quickstart (Hugging Face [code example])](https://flower.dev/docs/quickstart-huggingface.html) +* [Quickstart (PyTorch Lightning [code example])](https://flower.dev/docs/quickstart-pytorch-lightning.html) +* [Quickstart (MXNet)](https://flower.dev/docs/example-mxnet-walk-through.html) +* [Quickstart (Pandas)](https://flower.dev/docs/quickstart-pandas.html) +* [Quickstart (fastai)](https://flower.dev/docs/quickstart-fastai.html) +* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax) +* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist) +* [Quickstart (TFLite on Android [code example])](https://github.com/adap/flower/tree/main/examples/android) + +## Flower Baselines + +Flower Baselines is a collection of community-contributed experiments that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas: + +* [FedAvg](https://arxiv.org/abs/1602.05629): + * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedavg_mnist) +* [FedProx](https://arxiv.org/abs/1812.06127): + * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedprox_mnist) +* [FedBN: Federated Learning on non-IID Features via Local Batch Normalization](https://arxiv.org/abs/2102.07623): + * [Convergence Rate](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedbn/convergence_rate) +* [Adaptive Federated Optimization](https://arxiv.org/abs/2003.00295): + * [CIFAR-10/100](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/adaptive_federated_optimization) + +Check the Flower documentation to learn more: [Using Baselines](https://flower.dev/docs/using-baselines.html) + +The Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline: [Contributing Baselines](https://flower.dev/docs/contributing-baselines.html) + +## Flower Usage Examples + +Several code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow). + +Quickstart examples: + +* [Quickstart (TensorFlow)](https://github.com/adap/flower/tree/main/examples/quickstart_tensorflow) +* [Quickstart (PyTorch)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch) +* [Quickstart (Hugging Face)](https://github.com/adap/flower/tree/main/examples/quickstart_huggingface) +* [Quickstart (PyTorch Lightning)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch_lightning) +* [Quickstart (fastai)](https://github.com/adap/flower/tree/main/examples/quickstart_fastai) +* [Quickstart (Pandas)](https://github.com/adap/flower/tree/main/examples/quickstart_pandas) +* [Quickstart (MXNet)](https://github.com/adap/flower/tree/main/examples/quickstart_mxnet) +* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax) +* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist) +* [Quickstart (TFLite on Android)](https://github.com/adap/flower/tree/main/examples/android) + +Other [examples](https://github.com/adap/flower/tree/main/examples): + +* [Raspberry Pi & Nvidia Jetson Tutorial](https://github.com/adap/flower/tree/main/examples/embedded_devices) +* [Android & TFLite](https://github.com/adap/flower/tree/main/examples/android) +* [PyTorch: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/pytorch_from_centralized_to_federated) +* [MXNet: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/mxnet_from_centralized_to_federated) +* [Advanced Flower with TensorFlow/Keras](https://github.com/adap/flower/tree/main/examples/advanced_tensorflow) +* [Advanced Flower with PyTorch](https://github.com/adap/flower/tree/main/examples/advanced_pytorch) +* Single-Machine Simulation of Federated Learning Systems ([PyTorch](https://github.com/adap/flower/tree/main/examples/simulation_pytorch)) ([Tensorflow](https://github.com/adap/flower/tree/main/examples/simulation_tensorflow)) + +## Community + +Flower is built by a wonderful community of researchers and engineers. [Join Slack](https://flower.dev/join-slack) to meet them, [contributions](#contributing-to-flower) are welcome. + +<a href="https://github.com/adap/flower/graphs/contributors"> + <img src="https://contrib.rocks/image?repo=adap/flower" /> +</a> + +## Citation + +If you publish work that uses Flower, please cite Flower as follows: + +```bibtex +@article{beutel2020flower, + title={Flower: A Friendly Federated Learning Research Framework}, + author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D}, + journal={arXiv preprint arXiv:2007.14390}, + year={2020} +} +``` + +Please also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request. + +## Contributing to Flower + +We welcome contributions. Please see [CONTRIBUTING.md](CONTRIBUTING.md) to get started! + + +%package help +Summary: Development documents and examples for flwr +Provides: python3-flwr-doc +%description help +# Flower: A Friendly Federated Learning Framework + +<p align="center"> + <a href="https://flower.dev/"> + <img src="https://flower.dev/_next/image/?url=%2F_next%2Fstatic%2Fmedia%2Fflower_white_border.c2012e70.png&w=640&q=75" width="140px" alt="Flower Website" /> + </a> +</p> +<p align="center"> + <a href="https://flower.dev/">Website</a> | + <a href="https://flower.dev/blog">Blog</a> | + <a href="https://flower.dev/docs/">Docs</a> | + <a href="https://flower.dev/conf/flower-summit-2022">Conference</a> | + <a href="https://flower.dev/join-slack">Slack</a> + <br /><br /> +</p> + +[](https://github.com/adap/flower/blob/main/LICENSE) +[](https://github.com/adap/flower/blob/main/CONTRIBUTING.md) + + +[](https://flower.dev/join-slack) + +Flower (`flwr`) is a framework for building federated learning systems. The +design of Flower is based on a few guiding principles: + +* **Customizable**: Federated learning systems vary wildly from one use case to + another. Flower allows for a wide range of different configurations depending + on the needs of each individual use case. + +* **Extendable**: Flower originated from a research project at the University of + Oxford, so it was built with AI research in mind. Many components can be + extended and overridden to build new state-of-the-art systems. + +* **Framework-agnostic**: Different machine learning frameworks have different + strengths. Flower can be used with any machine learning framework, for + example, [PyTorch](https://pytorch.org), + [TensorFlow](https://tensorflow.org), [Hugging Face Transformers](https://huggingface.co/), [PyTorch Lightning](https://pytorchlightning.ai/), [MXNet](https://mxnet.apache.org/), [scikit-learn](https://scikit-learn.org/), [JAX](https://jax.readthedocs.io/), [TFLite](https://tensorflow.org/lite/), [fastai](https://www.fast.ai/), [Pandas](https://pandas.pydata.org/ +) for federated analytics, or even raw [NumPy](https://numpy.org/) + for users who enjoy computing gradients by hand. + +* **Understandable**: Flower is written with maintainability in mind. The + community is encouraged to both read and contribute to the codebase. + +Meet the Flower community on [flower.dev](https://flower.dev)! + +## Federated Learning Tutorial + +Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower. + +0. **What is Federated Learning?** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-0-What-is-FL.ipynb)) + +1. **An Introduction to Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-1-Intro-to-FL-PyTorch.ipynb)) + +2. **Using Strategies in Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-2-Strategies-in-FL-PyTorch.ipynb)) + +3. **Building Strategies for Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-3-Building-a-Strategy-PyTorch.ipynb)) + +4. **Custom Clients for Federated Learning** + + [](https://colab.research.google.com/github/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb) (or open the [Jupyter Notebook](https://github.com/adap/flower/blob/main/doc/source/tutorial/Flower-4-Client-and-NumPyClient-PyTorch.ipynb)) + +Stay tuned, more tutorials are coming soon. Topics include **Privacy and Security in Federated Learning**, and **Scaling Federated Learning**. + +## Documentation + +[Flower Docs](https://flower.dev/docs): +* [Installation](https://flower.dev/docs/installation.html) +* [Quickstart (TensorFlow)](https://flower.dev/docs/quickstart-tensorflow.html) +* [Quickstart (PyTorch)](https://flower.dev/docs/quickstart-pytorch.html) +* [Quickstart (Hugging Face [code example])](https://flower.dev/docs/quickstart-huggingface.html) +* [Quickstart (PyTorch Lightning [code example])](https://flower.dev/docs/quickstart-pytorch-lightning.html) +* [Quickstart (MXNet)](https://flower.dev/docs/example-mxnet-walk-through.html) +* [Quickstart (Pandas)](https://flower.dev/docs/quickstart-pandas.html) +* [Quickstart (fastai)](https://flower.dev/docs/quickstart-fastai.html) +* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax) +* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist) +* [Quickstart (TFLite on Android [code example])](https://github.com/adap/flower/tree/main/examples/android) + +## Flower Baselines + +Flower Baselines is a collection of community-contributed experiments that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas: + +* [FedAvg](https://arxiv.org/abs/1602.05629): + * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedavg_mnist) +* [FedProx](https://arxiv.org/abs/1812.06127): + * [MNIST](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedprox_mnist) +* [FedBN: Federated Learning on non-IID Features via Local Batch Normalization](https://arxiv.org/abs/2102.07623): + * [Convergence Rate](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/fedbn/convergence_rate) +* [Adaptive Federated Optimization](https://arxiv.org/abs/2003.00295): + * [CIFAR-10/100](https://github.com/adap/flower/tree/main/baselines/flwr_baselines/publications/adaptive_federated_optimization) + +Check the Flower documentation to learn more: [Using Baselines](https://flower.dev/docs/using-baselines.html) + +The Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline: [Contributing Baselines](https://flower.dev/docs/contributing-baselines.html) + +## Flower Usage Examples + +Several code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow). + +Quickstart examples: + +* [Quickstart (TensorFlow)](https://github.com/adap/flower/tree/main/examples/quickstart_tensorflow) +* [Quickstart (PyTorch)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch) +* [Quickstart (Hugging Face)](https://github.com/adap/flower/tree/main/examples/quickstart_huggingface) +* [Quickstart (PyTorch Lightning)](https://github.com/adap/flower/tree/main/examples/quickstart_pytorch_lightning) +* [Quickstart (fastai)](https://github.com/adap/flower/tree/main/examples/quickstart_fastai) +* [Quickstart (Pandas)](https://github.com/adap/flower/tree/main/examples/quickstart_pandas) +* [Quickstart (MXNet)](https://github.com/adap/flower/tree/main/examples/quickstart_mxnet) +* [Quickstart (JAX)](https://github.com/adap/flower/tree/main/examples/quickstart_jax) +* [Quickstart (scikit-learn)](https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist) +* [Quickstart (TFLite on Android)](https://github.com/adap/flower/tree/main/examples/android) + +Other [examples](https://github.com/adap/flower/tree/main/examples): + +* [Raspberry Pi & Nvidia Jetson Tutorial](https://github.com/adap/flower/tree/main/examples/embedded_devices) +* [Android & TFLite](https://github.com/adap/flower/tree/main/examples/android) +* [PyTorch: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/pytorch_from_centralized_to_federated) +* [MXNet: From Centralized to Federated](https://github.com/adap/flower/tree/main/examples/mxnet_from_centralized_to_federated) +* [Advanced Flower with TensorFlow/Keras](https://github.com/adap/flower/tree/main/examples/advanced_tensorflow) +* [Advanced Flower with PyTorch](https://github.com/adap/flower/tree/main/examples/advanced_pytorch) +* Single-Machine Simulation of Federated Learning Systems ([PyTorch](https://github.com/adap/flower/tree/main/examples/simulation_pytorch)) ([Tensorflow](https://github.com/adap/flower/tree/main/examples/simulation_tensorflow)) + +## Community + +Flower is built by a wonderful community of researchers and engineers. [Join Slack](https://flower.dev/join-slack) to meet them, [contributions](#contributing-to-flower) are welcome. + +<a href="https://github.com/adap/flower/graphs/contributors"> + <img src="https://contrib.rocks/image?repo=adap/flower" /> +</a> + +## Citation + +If you publish work that uses Flower, please cite Flower as follows: + +```bibtex +@article{beutel2020flower, + title={Flower: A Friendly Federated Learning Research Framework}, + author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D}, + journal={arXiv preprint arXiv:2007.14390}, + year={2020} +} +``` + +Please also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request. + +## Contributing to Flower + +We welcome contributions. Please see [CONTRIBUTING.md](CONTRIBUTING.md) to get started! + + +%prep +%autosetup -n flwr-1.4.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-flwr -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.0-1 +- Package Spec generated @@ -0,0 +1 @@ +c21d326150950924eee68f9d707d5f06 flwr-1.4.0.tar.gz |