summaryrefslogtreecommitdiff
path: root/python-fuzzy-pandas.spec
blob: fd52b59a2ef41fbdd75d753adc5deadb721c6e90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
%global _empty_manifest_terminate_build 0
Name:		python-fuzzy-pandas
Version:	0.1
Release:	1
Summary:	Fuzzy matching in pandas using csvmatch
License:	MIT
URL:		http://github.com/jsoma/fuzzy_pandas
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/37/1c/e0e1ea616ff1d09a33b53915258dd5e4cf586aed6237358e3312a5c90be6/fuzzy_pandas-0.1.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-csvmatch

%description
# fuzzy_pandas

A razor-thin layer over [csvmatch](https://github.com/maxharlow/csvmatch/) that allows you to do fuzzy mathing with pandas dataframes.

## Installation

```
pip install fuzzy_pandas
```

## Usage

To borrow 100% from the [original repo](https://github.com/maxharlow/csvmatch), say you have one CSV file such as:

```
name,location,codename
George Smiley,London,Beggerman
Percy Alleline,London,Tinker
Roy Bland,London,Soldier
Toby Esterhase,Vienna,Poorman
Peter Guillam,Brixton,none
Bill Haydon,London,Tailor
Oliver Lacon,London,none
Jim Prideaux,Slovakia,none
Connie Sachs,Oxford,none
```

And another such as:

```
Person Name,Location
Maria Andreyevna Ostrakova,Russia
Otto Leipzig,Estonia
George SMILEY,London
Peter Guillam,Brixton
Konny Saks,Oxford
Saul Enderby,London
Sam Collins,Vietnam
Tony Esterhase,Vienna
Claus Kretzschmar,Hamburg
```

You can then find which names are in both files:

```python
import pandas as pd
import fuzzy_pandas as fpd

df1 = pd.read_csv("data1.csv")
df2 = pd.read_csv("data2.csv")

matches = fpd.fuzzy_merge(df1, df2,
                          left_on=['name'],
                          right_on=['Person Name'],
                          ignore_case=True,
                          keep='match')

print(matches)
```

|.|name|Person Name|
|---|---|---|
|0|George Smiley|George SMILEY|
|1|Peter Guillam|Peter Guillam|

### Options

Dumping this out of the code itself, apologies for lack of pretty formatting.

* **left** : DataFrame
* **right** : DataFrame
    - Object to merge left with
* **on** : str or list
    - Column names to compare. These must be found in both DataFrames.
* **left_on** : str or list
    - Column names to compare in the left DataFrame.
* **right_on** : str or list
    - Column names to compare in the right DataFrame.
* **left_cols** : list, default None
    - List of columns to preserve from the left DataFrame.
    - Defaults to `left_on`.
* **right_cols** : list, default None
    - List of columns to preserve from the right DataFrame. 
    - Defaults to `right_on`.
* **method** : str or list, default 'exact'
    - Perform a fuzzy match, and an optional specified algorithm.
    - Multiple algorithms can be specified which will apply to each field
    respectively.
    - Options:
        * **exact**: exact matches
        * **levenshtein**: string distance metric
        * **jaro**: string distance metric
        * **metaphone**: phoenetic matching algorithm
        * **bilenko**: prompts for matches
* **threshold** : float or list, default `0.6`
    - The threshold for a fuzzy match as a number between 0 and 1. Multiple numbers will be applied to each field respectively.
* **ignore_case** : bool, default False
    - Ignore case (default is case-sensitive)
* **ignore_nonalpha** : bool, default False
    - Ignore non-alphanumeric characters
* **ignore_nonlatin** : bool, default False
    - Ignore characters from non-latin alphabets. Accented characters are compared to their unaccented equivalent
* **ignore_order_words** : bool, default False
    - Ignore the order words are given in
* **ignore_order_letters** : bool, default False
    - Ignore the order the letters are given in, regardless of word order
* **ignore_titles** : bool, default False
    - Ignore a predefined list of name titles (such as Mr, Ms, etc)
* **join** : { 'inner', 'left-outer', 'right-outer', 'full-outer' }
```

For more how-to information, check out [the examples folder](https://github.com/jsoma/fuzzy_pandas/tree/master/examples) or the [the original repo](https://github.com/maxharlow/csvmatch).



%package -n python3-fuzzy-pandas
Summary:	Fuzzy matching in pandas using csvmatch
Provides:	python-fuzzy-pandas
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-fuzzy-pandas
# fuzzy_pandas

A razor-thin layer over [csvmatch](https://github.com/maxharlow/csvmatch/) that allows you to do fuzzy mathing with pandas dataframes.

## Installation

```
pip install fuzzy_pandas
```

## Usage

To borrow 100% from the [original repo](https://github.com/maxharlow/csvmatch), say you have one CSV file such as:

```
name,location,codename
George Smiley,London,Beggerman
Percy Alleline,London,Tinker
Roy Bland,London,Soldier
Toby Esterhase,Vienna,Poorman
Peter Guillam,Brixton,none
Bill Haydon,London,Tailor
Oliver Lacon,London,none
Jim Prideaux,Slovakia,none
Connie Sachs,Oxford,none
```

And another such as:

```
Person Name,Location
Maria Andreyevna Ostrakova,Russia
Otto Leipzig,Estonia
George SMILEY,London
Peter Guillam,Brixton
Konny Saks,Oxford
Saul Enderby,London
Sam Collins,Vietnam
Tony Esterhase,Vienna
Claus Kretzschmar,Hamburg
```

You can then find which names are in both files:

```python
import pandas as pd
import fuzzy_pandas as fpd

df1 = pd.read_csv("data1.csv")
df2 = pd.read_csv("data2.csv")

matches = fpd.fuzzy_merge(df1, df2,
                          left_on=['name'],
                          right_on=['Person Name'],
                          ignore_case=True,
                          keep='match')

print(matches)
```

|.|name|Person Name|
|---|---|---|
|0|George Smiley|George SMILEY|
|1|Peter Guillam|Peter Guillam|

### Options

Dumping this out of the code itself, apologies for lack of pretty formatting.

* **left** : DataFrame
* **right** : DataFrame
    - Object to merge left with
* **on** : str or list
    - Column names to compare. These must be found in both DataFrames.
* **left_on** : str or list
    - Column names to compare in the left DataFrame.
* **right_on** : str or list
    - Column names to compare in the right DataFrame.
* **left_cols** : list, default None
    - List of columns to preserve from the left DataFrame.
    - Defaults to `left_on`.
* **right_cols** : list, default None
    - List of columns to preserve from the right DataFrame. 
    - Defaults to `right_on`.
* **method** : str or list, default 'exact'
    - Perform a fuzzy match, and an optional specified algorithm.
    - Multiple algorithms can be specified which will apply to each field
    respectively.
    - Options:
        * **exact**: exact matches
        * **levenshtein**: string distance metric
        * **jaro**: string distance metric
        * **metaphone**: phoenetic matching algorithm
        * **bilenko**: prompts for matches
* **threshold** : float or list, default `0.6`
    - The threshold for a fuzzy match as a number between 0 and 1. Multiple numbers will be applied to each field respectively.
* **ignore_case** : bool, default False
    - Ignore case (default is case-sensitive)
* **ignore_nonalpha** : bool, default False
    - Ignore non-alphanumeric characters
* **ignore_nonlatin** : bool, default False
    - Ignore characters from non-latin alphabets. Accented characters are compared to their unaccented equivalent
* **ignore_order_words** : bool, default False
    - Ignore the order words are given in
* **ignore_order_letters** : bool, default False
    - Ignore the order the letters are given in, regardless of word order
* **ignore_titles** : bool, default False
    - Ignore a predefined list of name titles (such as Mr, Ms, etc)
* **join** : { 'inner', 'left-outer', 'right-outer', 'full-outer' }
```

For more how-to information, check out [the examples folder](https://github.com/jsoma/fuzzy_pandas/tree/master/examples) or the [the original repo](https://github.com/maxharlow/csvmatch).



%package help
Summary:	Development documents and examples for fuzzy-pandas
Provides:	python3-fuzzy-pandas-doc
%description help
# fuzzy_pandas

A razor-thin layer over [csvmatch](https://github.com/maxharlow/csvmatch/) that allows you to do fuzzy mathing with pandas dataframes.

## Installation

```
pip install fuzzy_pandas
```

## Usage

To borrow 100% from the [original repo](https://github.com/maxharlow/csvmatch), say you have one CSV file such as:

```
name,location,codename
George Smiley,London,Beggerman
Percy Alleline,London,Tinker
Roy Bland,London,Soldier
Toby Esterhase,Vienna,Poorman
Peter Guillam,Brixton,none
Bill Haydon,London,Tailor
Oliver Lacon,London,none
Jim Prideaux,Slovakia,none
Connie Sachs,Oxford,none
```

And another such as:

```
Person Name,Location
Maria Andreyevna Ostrakova,Russia
Otto Leipzig,Estonia
George SMILEY,London
Peter Guillam,Brixton
Konny Saks,Oxford
Saul Enderby,London
Sam Collins,Vietnam
Tony Esterhase,Vienna
Claus Kretzschmar,Hamburg
```

You can then find which names are in both files:

```python
import pandas as pd
import fuzzy_pandas as fpd

df1 = pd.read_csv("data1.csv")
df2 = pd.read_csv("data2.csv")

matches = fpd.fuzzy_merge(df1, df2,
                          left_on=['name'],
                          right_on=['Person Name'],
                          ignore_case=True,
                          keep='match')

print(matches)
```

|.|name|Person Name|
|---|---|---|
|0|George Smiley|George SMILEY|
|1|Peter Guillam|Peter Guillam|

### Options

Dumping this out of the code itself, apologies for lack of pretty formatting.

* **left** : DataFrame
* **right** : DataFrame
    - Object to merge left with
* **on** : str or list
    - Column names to compare. These must be found in both DataFrames.
* **left_on** : str or list
    - Column names to compare in the left DataFrame.
* **right_on** : str or list
    - Column names to compare in the right DataFrame.
* **left_cols** : list, default None
    - List of columns to preserve from the left DataFrame.
    - Defaults to `left_on`.
* **right_cols** : list, default None
    - List of columns to preserve from the right DataFrame. 
    - Defaults to `right_on`.
* **method** : str or list, default 'exact'
    - Perform a fuzzy match, and an optional specified algorithm.
    - Multiple algorithms can be specified which will apply to each field
    respectively.
    - Options:
        * **exact**: exact matches
        * **levenshtein**: string distance metric
        * **jaro**: string distance metric
        * **metaphone**: phoenetic matching algorithm
        * **bilenko**: prompts for matches
* **threshold** : float or list, default `0.6`
    - The threshold for a fuzzy match as a number between 0 and 1. Multiple numbers will be applied to each field respectively.
* **ignore_case** : bool, default False
    - Ignore case (default is case-sensitive)
* **ignore_nonalpha** : bool, default False
    - Ignore non-alphanumeric characters
* **ignore_nonlatin** : bool, default False
    - Ignore characters from non-latin alphabets. Accented characters are compared to their unaccented equivalent
* **ignore_order_words** : bool, default False
    - Ignore the order words are given in
* **ignore_order_letters** : bool, default False
    - Ignore the order the letters are given in, regardless of word order
* **ignore_titles** : bool, default False
    - Ignore a predefined list of name titles (such as Mr, Ms, etc)
* **join** : { 'inner', 'left-outer', 'right-outer', 'full-outer' }
```

For more how-to information, check out [the examples folder](https://github.com/jsoma/fuzzy_pandas/tree/master/examples) or the [the original repo](https://github.com/maxharlow/csvmatch).



%prep
%autosetup -n fuzzy-pandas-0.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-fuzzy-pandas -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1-1
- Package Spec generated