summaryrefslogtreecommitdiff
path: root/python-fw-ddsm.spec
blob: e694f155e50a3b9884c875b981ea5e42facb640f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
%global _empty_manifest_terminate_build 0
Name:		python-fw-ddsm
Version:	0.10.8
Release:	1
Summary:	Frank-Wolfe-based distributed demand scheduling method package
License:	GNU General Public License v3 or later (GPLv3+)
URL:		https://github.com/dorahee/FW-DDSM.git
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/e3/fe/305c0f6e8efcf318809917c07ccbea657bdef40ffaeca7b7a94d129e5a53/fw-ddsm-0.10.8.tar.gz
BuildArch:	noarch


%description
# FW-DDSM

A python package for implementing the Frank-Wolfe-based distributed demand scheduling method. 

`pip install fw-ddsm`

# Setting up the ubuntu envrionment for using FW-DDSM

1. install python3 (should come with ubuntu v20
2. install pip
`sudo apt-get install python3-pip`
3. install dependencies
`pip3 install fw-ddsm pandas pandas_bokeh numpy more-itertools`
4. install snap
`sudo apt-get install snapd`
5. install minizinc bundle
`sudo snap install minizinc --classic`

# Features of FW-DDSM

1. Pricing master problem

Minimise the inconvenience, consumption cost and the peak-to-average ratio of the aggregate demand profile of all households. 

2. Household subproblem

Scheduling both the appliances and the batteries to minmise the cost, the inconvenience and the peak-to-average ratio of the household. 





%package -n python3-fw-ddsm
Summary:	Frank-Wolfe-based distributed demand scheduling method package
Provides:	python-fw-ddsm
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-fw-ddsm
# FW-DDSM

A python package for implementing the Frank-Wolfe-based distributed demand scheduling method. 

`pip install fw-ddsm`

# Setting up the ubuntu envrionment for using FW-DDSM

1. install python3 (should come with ubuntu v20
2. install pip
`sudo apt-get install python3-pip`
3. install dependencies
`pip3 install fw-ddsm pandas pandas_bokeh numpy more-itertools`
4. install snap
`sudo apt-get install snapd`
5. install minizinc bundle
`sudo snap install minizinc --classic`

# Features of FW-DDSM

1. Pricing master problem

Minimise the inconvenience, consumption cost and the peak-to-average ratio of the aggregate demand profile of all households. 

2. Household subproblem

Scheduling both the appliances and the batteries to minmise the cost, the inconvenience and the peak-to-average ratio of the household. 





%package help
Summary:	Development documents and examples for fw-ddsm
Provides:	python3-fw-ddsm-doc
%description help
# FW-DDSM

A python package for implementing the Frank-Wolfe-based distributed demand scheduling method. 

`pip install fw-ddsm`

# Setting up the ubuntu envrionment for using FW-DDSM

1. install python3 (should come with ubuntu v20
2. install pip
`sudo apt-get install python3-pip`
3. install dependencies
`pip3 install fw-ddsm pandas pandas_bokeh numpy more-itertools`
4. install snap
`sudo apt-get install snapd`
5. install minizinc bundle
`sudo snap install minizinc --classic`

# Features of FW-DDSM

1. Pricing master problem

Minimise the inconvenience, consumption cost and the peak-to-average ratio of the aggregate demand profile of all households. 

2. Household subproblem

Scheduling both the appliances and the batteries to minmise the cost, the inconvenience and the peak-to-average ratio of the household. 





%prep
%autosetup -n fw-ddsm-0.10.8

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-fw-ddsm -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.10.8-1
- Package Spec generated