1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
|
%global _empty_manifest_terminate_build 0
Name: python-geotiff
Version: 0.2.9
Release: 1
Summary: A noGDAL tool for reading and writing geotiff files
License: GNU Lesser General Public License v2 or later (LGPLv2+)
URL: https://github.com/Open-Source-Agriculture/geotiff
Source0: https://mirrors.aliyun.com/pypi/web/packages/87/03/0c458cc00b9f6a212eb8c02564ed490ef76bac950177415bf471d9448b7a/geotiff-0.2.9.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-pyproj
Requires: python3-tifffile
Requires: python3-zarr
Requires: python3-pytest
%description
# geotiff
A noGDAL tool for reading geotiff files
WARNING this package is under development and some features are unstable. Use with caution.
Please support this project be giving it a [star on GitHub](https://github.com/Open-Source-Agriculture/geotiff)!
### What is noGDAL?
**[noGDAL](https://kipling.medium.com/nogdal-e5b60b114a1c)** is a philosophy for developing geospatial programs in python without using GDAL.
### Installation
Installing this package is as easy as:
```
pip install geotiff
```
There is also an Anaconda-based package available, published on [conda-forge](https://conda-forge.org/):
```
conda install -c conda-forge python-geotiff
```
For local development from sources, you can install geotiff with its development requirements using:
```
git clone git@github.com:KipCrossing/geotiff.git
cd geotiff
pip install -e .[dev]
```
### Usage
#### Making the GeoTiff object
```python
from geotiff import GeoTiff
geo_tiff = GeoTiff(tiff_file)
```
This will detect the crs code. If it's 'user defined' and you know what it should be, you may supply a crs code:
```python
geo_tiff = GeoTiff(tiff_file, crs_code=4326)
```
By default, the coordinates will be in WGS 84, however they can be specified by using the `as_crs` param:
```python
geo_tiff = GeoTiff(tiff_file, as_crs=7844)
```
Or you can use the original crs by setting `as_crs` to `None`:
```python
geo_tiff = GeoTiff(tiff_file, as_crs=None)
```
If the geotiff file has multiple bands, you can specify which band to use:
```python
geo_tiff = GeoTiff(tiff_file, band=1)
```
The default band is 0
Get information (properties) about the geotiff:
```python
# the original crs code
geo_tiff.crs_code
# the current crs code
geo_tiff.as_crs
# the shape of the tiff
geo_tiff.tif_shape
# the bounding box in the as_crs CRS
geo_tiff.tif_bBox
# the bounding box as WGS 84
geo_tiff.tif_bBox_wgs_84
# the bounding box in the as_crs converted coordinates
geo_tiff.tif_bBox_converted
```
Get coordinates of a point/pixel:
```python
i=5
j=6
# in the as_crs coords
geo_tiff.get_coords(i, j)
# in WGS 84 coords
geo_tiff.get_wgs_84_coords(i, j)
```
#### Read the data
To read the data, use the `.read()` method. This will return a [zarr](https://zarr.readthedocs.io/en/stable/api/core.html) array as often geotiff files cannot fit into memory.
```python
zarr_array = geo_tiff.read()
```
If you are confident that the data will fit into memory, you can convert it to a numpy array:
```python
import numpy as np
array = np.array(zarr_array)
```
#### Read a section of a large tiff
In many cases, you are only interested in a section of the tiff. For convenience, you can use the `.read_box()` method. This will return a numpy array.
WARNING: This will fail if the box you are using is too large and the data cannot fit into memory.
```python
from geotiff import GeoTiff
# in WGS 84
area_box = [(138.632071411, -32.447310785), (138.644218874, -32.456979174)]
geo_tiff = GeoTiff(tiff_file)
array = geo_tiff.read_box(area_box)
```
*Note:* For the `area_box`, use the same crs as `as_crs`.
In some cases, you may want some extra points/pixels around the outside of your `area_box`. This may be useful if you want to interpolate to points near the area_box boundary. To achieve this, use the `outer_points` param:
array = geo_tiff.read_box(area_box, outer_points=2)
This will get 2 extra perimeters of points around the outside of the the `area_box`.
#### Getting bounding box information
There are also some helper methods to get the bounding box of the resulting cut array:
```python
# col and row indexes of the cut area
int_box = geo_tiff.get_int_box(area_box)
# lon and lat coords of the cut points/pixels
wgs_84_box = geo_tiff.get_bBox_wgs_84(area_box)
```
Again, you can also get bounding box for an extra n layers of points/pixels that directly surround the `area_box`:
```python
# col and row indexes of the cut area
int_box = geo_tiff.get_int_box(area_box, outer_points = 2)
# lon and lat coords of the cut points/pixels
wgs_84_box = geo_tiff.get_bBox_wgs_84(area_box, outer_points = 2)
```
#### Get coordinates of a point/pixel
You may want to get the coordinates of a value in your array:
```python
i=int_box[0][0] + 5
j=int_box[0][1] + 6
geo_tiff.get_wgs_84_coords(i, j)
```
#### Get coordinates of an array
You may want to simply get all the coordinates in the array:
```python
array = geo_tiff.read_box(area_box, outer_points=2)
lon_array, lat_array = geo_tiff.get_coord_arrays(area_box, outer_points=2)
```
This will return two arrays that are in the same shape as the array from the `read_box()` method. The output coords will be in the `as_crs` crs.
If your tiff file is small and can fit into memory, simply:
```python
lon_array, lat_array = geo_tiff.get_coord_arrays()
```
### Contributing
If you would like to contribute to this project, please fork this repo and make a PR with your patches.
You can join the conversation by saying hi in the [project discussion board](https://github.com/KipCrossing/geotiff/discussions).
To help users and other contributes, be sure to:
- make doc blocs if appropriate
- use typing wherever possible
- format with black
*Note:* The continuous integration has lint checking with **mypy**, so be sure to check it yourself before making a PR.
### Project Road Map
#### Core Features
- [x] read tiff files (including BigTiff)
- [ ] write tiff files (including BigTiff)
- [x] convert between epsg coordinate systems
- [ ] read a user defined CRS `32767` from tiff file
- [x] cut a section (bounding box) of the tiff file
- [x] convert the data to numpy arrays
#### Additional features
- [x] **(50%)** Full test coverage
- [x] Typing with lint checking using mypy
- [x] Formatted with black
- [x] Documentation: doc blocs
- [ ] Documentation: readthedocs
%package -n python3-geotiff
Summary: A noGDAL tool for reading and writing geotiff files
Provides: python-geotiff
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-geotiff
# geotiff
A noGDAL tool for reading geotiff files
WARNING this package is under development and some features are unstable. Use with caution.
Please support this project be giving it a [star on GitHub](https://github.com/Open-Source-Agriculture/geotiff)!
### What is noGDAL?
**[noGDAL](https://kipling.medium.com/nogdal-e5b60b114a1c)** is a philosophy for developing geospatial programs in python without using GDAL.
### Installation
Installing this package is as easy as:
```
pip install geotiff
```
There is also an Anaconda-based package available, published on [conda-forge](https://conda-forge.org/):
```
conda install -c conda-forge python-geotiff
```
For local development from sources, you can install geotiff with its development requirements using:
```
git clone git@github.com:KipCrossing/geotiff.git
cd geotiff
pip install -e .[dev]
```
### Usage
#### Making the GeoTiff object
```python
from geotiff import GeoTiff
geo_tiff = GeoTiff(tiff_file)
```
This will detect the crs code. If it's 'user defined' and you know what it should be, you may supply a crs code:
```python
geo_tiff = GeoTiff(tiff_file, crs_code=4326)
```
By default, the coordinates will be in WGS 84, however they can be specified by using the `as_crs` param:
```python
geo_tiff = GeoTiff(tiff_file, as_crs=7844)
```
Or you can use the original crs by setting `as_crs` to `None`:
```python
geo_tiff = GeoTiff(tiff_file, as_crs=None)
```
If the geotiff file has multiple bands, you can specify which band to use:
```python
geo_tiff = GeoTiff(tiff_file, band=1)
```
The default band is 0
Get information (properties) about the geotiff:
```python
# the original crs code
geo_tiff.crs_code
# the current crs code
geo_tiff.as_crs
# the shape of the tiff
geo_tiff.tif_shape
# the bounding box in the as_crs CRS
geo_tiff.tif_bBox
# the bounding box as WGS 84
geo_tiff.tif_bBox_wgs_84
# the bounding box in the as_crs converted coordinates
geo_tiff.tif_bBox_converted
```
Get coordinates of a point/pixel:
```python
i=5
j=6
# in the as_crs coords
geo_tiff.get_coords(i, j)
# in WGS 84 coords
geo_tiff.get_wgs_84_coords(i, j)
```
#### Read the data
To read the data, use the `.read()` method. This will return a [zarr](https://zarr.readthedocs.io/en/stable/api/core.html) array as often geotiff files cannot fit into memory.
```python
zarr_array = geo_tiff.read()
```
If you are confident that the data will fit into memory, you can convert it to a numpy array:
```python
import numpy as np
array = np.array(zarr_array)
```
#### Read a section of a large tiff
In many cases, you are only interested in a section of the tiff. For convenience, you can use the `.read_box()` method. This will return a numpy array.
WARNING: This will fail if the box you are using is too large and the data cannot fit into memory.
```python
from geotiff import GeoTiff
# in WGS 84
area_box = [(138.632071411, -32.447310785), (138.644218874, -32.456979174)]
geo_tiff = GeoTiff(tiff_file)
array = geo_tiff.read_box(area_box)
```
*Note:* For the `area_box`, use the same crs as `as_crs`.
In some cases, you may want some extra points/pixels around the outside of your `area_box`. This may be useful if you want to interpolate to points near the area_box boundary. To achieve this, use the `outer_points` param:
array = geo_tiff.read_box(area_box, outer_points=2)
This will get 2 extra perimeters of points around the outside of the the `area_box`.
#### Getting bounding box information
There are also some helper methods to get the bounding box of the resulting cut array:
```python
# col and row indexes of the cut area
int_box = geo_tiff.get_int_box(area_box)
# lon and lat coords of the cut points/pixels
wgs_84_box = geo_tiff.get_bBox_wgs_84(area_box)
```
Again, you can also get bounding box for an extra n layers of points/pixels that directly surround the `area_box`:
```python
# col and row indexes of the cut area
int_box = geo_tiff.get_int_box(area_box, outer_points = 2)
# lon and lat coords of the cut points/pixels
wgs_84_box = geo_tiff.get_bBox_wgs_84(area_box, outer_points = 2)
```
#### Get coordinates of a point/pixel
You may want to get the coordinates of a value in your array:
```python
i=int_box[0][0] + 5
j=int_box[0][1] + 6
geo_tiff.get_wgs_84_coords(i, j)
```
#### Get coordinates of an array
You may want to simply get all the coordinates in the array:
```python
array = geo_tiff.read_box(area_box, outer_points=2)
lon_array, lat_array = geo_tiff.get_coord_arrays(area_box, outer_points=2)
```
This will return two arrays that are in the same shape as the array from the `read_box()` method. The output coords will be in the `as_crs` crs.
If your tiff file is small and can fit into memory, simply:
```python
lon_array, lat_array = geo_tiff.get_coord_arrays()
```
### Contributing
If you would like to contribute to this project, please fork this repo and make a PR with your patches.
You can join the conversation by saying hi in the [project discussion board](https://github.com/KipCrossing/geotiff/discussions).
To help users and other contributes, be sure to:
- make doc blocs if appropriate
- use typing wherever possible
- format with black
*Note:* The continuous integration has lint checking with **mypy**, so be sure to check it yourself before making a PR.
### Project Road Map
#### Core Features
- [x] read tiff files (including BigTiff)
- [ ] write tiff files (including BigTiff)
- [x] convert between epsg coordinate systems
- [ ] read a user defined CRS `32767` from tiff file
- [x] cut a section (bounding box) of the tiff file
- [x] convert the data to numpy arrays
#### Additional features
- [x] **(50%)** Full test coverage
- [x] Typing with lint checking using mypy
- [x] Formatted with black
- [x] Documentation: doc blocs
- [ ] Documentation: readthedocs
%package help
Summary: Development documents and examples for geotiff
Provides: python3-geotiff-doc
%description help
# geotiff
A noGDAL tool for reading geotiff files
WARNING this package is under development and some features are unstable. Use with caution.
Please support this project be giving it a [star on GitHub](https://github.com/Open-Source-Agriculture/geotiff)!
### What is noGDAL?
**[noGDAL](https://kipling.medium.com/nogdal-e5b60b114a1c)** is a philosophy for developing geospatial programs in python without using GDAL.
### Installation
Installing this package is as easy as:
```
pip install geotiff
```
There is also an Anaconda-based package available, published on [conda-forge](https://conda-forge.org/):
```
conda install -c conda-forge python-geotiff
```
For local development from sources, you can install geotiff with its development requirements using:
```
git clone git@github.com:KipCrossing/geotiff.git
cd geotiff
pip install -e .[dev]
```
### Usage
#### Making the GeoTiff object
```python
from geotiff import GeoTiff
geo_tiff = GeoTiff(tiff_file)
```
This will detect the crs code. If it's 'user defined' and you know what it should be, you may supply a crs code:
```python
geo_tiff = GeoTiff(tiff_file, crs_code=4326)
```
By default, the coordinates will be in WGS 84, however they can be specified by using the `as_crs` param:
```python
geo_tiff = GeoTiff(tiff_file, as_crs=7844)
```
Or you can use the original crs by setting `as_crs` to `None`:
```python
geo_tiff = GeoTiff(tiff_file, as_crs=None)
```
If the geotiff file has multiple bands, you can specify which band to use:
```python
geo_tiff = GeoTiff(tiff_file, band=1)
```
The default band is 0
Get information (properties) about the geotiff:
```python
# the original crs code
geo_tiff.crs_code
# the current crs code
geo_tiff.as_crs
# the shape of the tiff
geo_tiff.tif_shape
# the bounding box in the as_crs CRS
geo_tiff.tif_bBox
# the bounding box as WGS 84
geo_tiff.tif_bBox_wgs_84
# the bounding box in the as_crs converted coordinates
geo_tiff.tif_bBox_converted
```
Get coordinates of a point/pixel:
```python
i=5
j=6
# in the as_crs coords
geo_tiff.get_coords(i, j)
# in WGS 84 coords
geo_tiff.get_wgs_84_coords(i, j)
```
#### Read the data
To read the data, use the `.read()` method. This will return a [zarr](https://zarr.readthedocs.io/en/stable/api/core.html) array as often geotiff files cannot fit into memory.
```python
zarr_array = geo_tiff.read()
```
If you are confident that the data will fit into memory, you can convert it to a numpy array:
```python
import numpy as np
array = np.array(zarr_array)
```
#### Read a section of a large tiff
In many cases, you are only interested in a section of the tiff. For convenience, you can use the `.read_box()` method. This will return a numpy array.
WARNING: This will fail if the box you are using is too large and the data cannot fit into memory.
```python
from geotiff import GeoTiff
# in WGS 84
area_box = [(138.632071411, -32.447310785), (138.644218874, -32.456979174)]
geo_tiff = GeoTiff(tiff_file)
array = geo_tiff.read_box(area_box)
```
*Note:* For the `area_box`, use the same crs as `as_crs`.
In some cases, you may want some extra points/pixels around the outside of your `area_box`. This may be useful if you want to interpolate to points near the area_box boundary. To achieve this, use the `outer_points` param:
array = geo_tiff.read_box(area_box, outer_points=2)
This will get 2 extra perimeters of points around the outside of the the `area_box`.
#### Getting bounding box information
There are also some helper methods to get the bounding box of the resulting cut array:
```python
# col and row indexes of the cut area
int_box = geo_tiff.get_int_box(area_box)
# lon and lat coords of the cut points/pixels
wgs_84_box = geo_tiff.get_bBox_wgs_84(area_box)
```
Again, you can also get bounding box for an extra n layers of points/pixels that directly surround the `area_box`:
```python
# col and row indexes of the cut area
int_box = geo_tiff.get_int_box(area_box, outer_points = 2)
# lon and lat coords of the cut points/pixels
wgs_84_box = geo_tiff.get_bBox_wgs_84(area_box, outer_points = 2)
```
#### Get coordinates of a point/pixel
You may want to get the coordinates of a value in your array:
```python
i=int_box[0][0] + 5
j=int_box[0][1] + 6
geo_tiff.get_wgs_84_coords(i, j)
```
#### Get coordinates of an array
You may want to simply get all the coordinates in the array:
```python
array = geo_tiff.read_box(area_box, outer_points=2)
lon_array, lat_array = geo_tiff.get_coord_arrays(area_box, outer_points=2)
```
This will return two arrays that are in the same shape as the array from the `read_box()` method. The output coords will be in the `as_crs` crs.
If your tiff file is small and can fit into memory, simply:
```python
lon_array, lat_array = geo_tiff.get_coord_arrays()
```
### Contributing
If you would like to contribute to this project, please fork this repo and make a PR with your patches.
You can join the conversation by saying hi in the [project discussion board](https://github.com/KipCrossing/geotiff/discussions).
To help users and other contributes, be sure to:
- make doc blocs if appropriate
- use typing wherever possible
- format with black
*Note:* The continuous integration has lint checking with **mypy**, so be sure to check it yourself before making a PR.
### Project Road Map
#### Core Features
- [x] read tiff files (including BigTiff)
- [ ] write tiff files (including BigTiff)
- [x] convert between epsg coordinate systems
- [ ] read a user defined CRS `32767` from tiff file
- [x] cut a section (bounding box) of the tiff file
- [x] convert the data to numpy arrays
#### Additional features
- [x] **(50%)** Full test coverage
- [x] Typing with lint checking using mypy
- [x] Formatted with black
- [x] Documentation: doc blocs
- [ ] Documentation: readthedocs
%prep
%autosetup -n geotiff-0.2.9
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-geotiff -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.9-1
- Package Spec generated
|