1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
%global _empty_manifest_terminate_build 0
Name: python-glimix-core
Version: 3.1.13
Release: 1
Summary: Fast inference over mean and covariance parameters for Generalised Linear Mixed Models
License: MIT
URL: https://github.com/limix/glimix-core
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b6/2a/c77df3eff97040fdd82bde3dac78c8130823230e56fce7d3ef86b09a17a9/glimix-core-3.1.13.tar.gz
BuildArch: noarch
Requires: python3-brent-search
Requires: python3-liknorm
Requires: python3-ndarray-listener
Requires: python3-numpy
Requires: python3-numpy-sugar
Requires: python3-optimix
Requires: python3-pytest
Requires: python3-pytest-doctestplus
Requires: python3-scipy
Requires: python3-tqdm
%description
# glimix-core
[](https://glimix-core.readthedocs.io/en/latest/?badge=latest)
Fast inference over mean and covariance parameters for Generalised Linear Mixed
Models.
It implements the mathematical tricks of
[FaST-LMM](https://github.com/MicrosoftGenomics/FaST-LMM) for the special case
of Linear Mixed Models with a linear covariance matrix and provides an
interface to perform inference over millions of covariates in seconds.
The Generalised Linear Mixed Model inference is implemented via Expectation
Propagation and also makes use of several mathematical tricks to handle large
data sets with thousands of samples and millions of covariates.
## Install
There are two main ways of installing it.
Via [pip](https://pypi.python.org/pypi/pip):
```bash
pip install glimix-core
```
Or via [conda](http://conda.pydata.org/docs/index.html):
```bash
conda install -c conda-forge glimix-core
```
## Running the tests
After installation, you can test it
```bash
python -c "import glimix_core; glimix_core.test()"
```
as long as you have [pytest](https://docs.pytest.org/en/latest/).
## Usage
Here it is a very simple example to get you started:
```python
>>> from numpy import array, ones
>>> from numpy_sugar.linalg import economic_qs_linear
>>> from glimix_core.lmm import LMM
>>>
>>> X = array([[1, 2], [3, -1], [1.1, 0.5], [0.5, -0.4]], float)
>>> QS = economic_qs_linear(X, False)
>>> X = ones((4, 1))
>>> y = array([-1, 2, 0.3, 0.5])
>>> lmm = LMM(y, X, QS)
>>> lmm.fit(verbose=False)
>>> lmm.lml()
-2.2726234086180557
```
We also provide an extensive [documentation](http://glimix-core.readthedocs.org/) about the library.
## Authors
* [Danilo Horta](https://github.com/horta)
## License
This project is licensed under the [MIT License](https://raw.githubusercontent.com/limix/glimix-core/master/LICENSE.md).
%package -n python3-glimix-core
Summary: Fast inference over mean and covariance parameters for Generalised Linear Mixed Models
Provides: python-glimix-core
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-glimix-core
# glimix-core
[](https://glimix-core.readthedocs.io/en/latest/?badge=latest)
Fast inference over mean and covariance parameters for Generalised Linear Mixed
Models.
It implements the mathematical tricks of
[FaST-LMM](https://github.com/MicrosoftGenomics/FaST-LMM) for the special case
of Linear Mixed Models with a linear covariance matrix and provides an
interface to perform inference over millions of covariates in seconds.
The Generalised Linear Mixed Model inference is implemented via Expectation
Propagation and also makes use of several mathematical tricks to handle large
data sets with thousands of samples and millions of covariates.
## Install
There are two main ways of installing it.
Via [pip](https://pypi.python.org/pypi/pip):
```bash
pip install glimix-core
```
Or via [conda](http://conda.pydata.org/docs/index.html):
```bash
conda install -c conda-forge glimix-core
```
## Running the tests
After installation, you can test it
```bash
python -c "import glimix_core; glimix_core.test()"
```
as long as you have [pytest](https://docs.pytest.org/en/latest/).
## Usage
Here it is a very simple example to get you started:
```python
>>> from numpy import array, ones
>>> from numpy_sugar.linalg import economic_qs_linear
>>> from glimix_core.lmm import LMM
>>>
>>> X = array([[1, 2], [3, -1], [1.1, 0.5], [0.5, -0.4]], float)
>>> QS = economic_qs_linear(X, False)
>>> X = ones((4, 1))
>>> y = array([-1, 2, 0.3, 0.5])
>>> lmm = LMM(y, X, QS)
>>> lmm.fit(verbose=False)
>>> lmm.lml()
-2.2726234086180557
```
We also provide an extensive [documentation](http://glimix-core.readthedocs.org/) about the library.
## Authors
* [Danilo Horta](https://github.com/horta)
## License
This project is licensed under the [MIT License](https://raw.githubusercontent.com/limix/glimix-core/master/LICENSE.md).
%package help
Summary: Development documents and examples for glimix-core
Provides: python3-glimix-core-doc
%description help
# glimix-core
[](https://glimix-core.readthedocs.io/en/latest/?badge=latest)
Fast inference over mean and covariance parameters for Generalised Linear Mixed
Models.
It implements the mathematical tricks of
[FaST-LMM](https://github.com/MicrosoftGenomics/FaST-LMM) for the special case
of Linear Mixed Models with a linear covariance matrix and provides an
interface to perform inference over millions of covariates in seconds.
The Generalised Linear Mixed Model inference is implemented via Expectation
Propagation and also makes use of several mathematical tricks to handle large
data sets with thousands of samples and millions of covariates.
## Install
There are two main ways of installing it.
Via [pip](https://pypi.python.org/pypi/pip):
```bash
pip install glimix-core
```
Or via [conda](http://conda.pydata.org/docs/index.html):
```bash
conda install -c conda-forge glimix-core
```
## Running the tests
After installation, you can test it
```bash
python -c "import glimix_core; glimix_core.test()"
```
as long as you have [pytest](https://docs.pytest.org/en/latest/).
## Usage
Here it is a very simple example to get you started:
```python
>>> from numpy import array, ones
>>> from numpy_sugar.linalg import economic_qs_linear
>>> from glimix_core.lmm import LMM
>>>
>>> X = array([[1, 2], [3, -1], [1.1, 0.5], [0.5, -0.4]], float)
>>> QS = economic_qs_linear(X, False)
>>> X = ones((4, 1))
>>> y = array([-1, 2, 0.3, 0.5])
>>> lmm = LMM(y, X, QS)
>>> lmm.fit(verbose=False)
>>> lmm.lml()
-2.2726234086180557
```
We also provide an extensive [documentation](http://glimix-core.readthedocs.org/) about the library.
## Authors
* [Danilo Horta](https://github.com/horta)
## License
This project is licensed under the [MIT License](https://raw.githubusercontent.com/limix/glimix-core/master/LICENSE.md).
%prep
%autosetup -n glimix-core-3.1.13
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-glimix-core -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 3.1.13-1
- Package Spec generated
|